2008年全国统一高考物理全国卷ⅰ含解析版
发布时间:2024-05-29 11:05:40浏览次数:352008 年全国统一高考物理试卷(全国卷Ⅰ)一、选择题(本题共 8 小题,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分)1.(6 分)如图所示,一物体自倾角为 θ 的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角 φ 满足( )A.tanφ=sinθ B.tanφ=cosθ C.tanφ=tanθ D.tanφ=2tanθ2.(6 分)如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )A.向右做加速运动 B.向右做减速运动C.向左做加速运动 D.向左做匀速运动3.(6 分)一列简谐横波沿 x 轴传播,周期为 T,t=0 时的波形如图所示,此时处于 x=3m 处的质点正在向上运动,若 a、b 两质点平衡位置的坐标分别为 xa=2.5m 和 xb=5.5m,则( )A.当 a 质点处在波峰时,b 质点恰在波谷B.当 t= 时,a 质点正在向 y 轴负方向运动C.当 t= 时,b 质点正在向 y 轴负方向运动D.在某一时刻,a、b 两质点的位移和速度可能相同4.(6 分)已知太阳到地球与地球到月球的距离的比值约为 390,月球绕地球旋转的周期约为 27 天,利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为( )A.0.2 B.2 C.20 D.2005.(6 分)三个原子核 X、Y、Z,X 核放出一个正电子后变为 Y 核,Y 核与质子发生核反应后生成 Z 核并放出一个氦核( He).则下面说法中正确的是( )A.X 核比 Z 核多一个质子B.X 核比 Z 核少一个中子C.X 核的质量数比 Z 核质量数大 3D.X 核与 Z 核的总电荷是 Y 核电荷的 2 倍6.(6 分)已知地球半径约为 6.4×106 m,空气的摩尔质量约为 2.9×10﹣2 kg/mol,一个标准大气压约为 1.0×105 Pa.利用以上数据可估算出地球表面大气在标准状态下的体积为( )A.4×1016 m3B.4×1018 m3C.4×1020 m3D.4×1022 m37.(6 分)矩形导线框 abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度 B 随时间变化的规律如图所示。若规定顺时针方向为感应电流 I 的正方向,下列各图中正确的是( )
【专题】512:运动学中的图像专题.【分析】物体做匀加速运动,加速度不变.对 AB 段、BC 段时间相等,分别用位移关系公式列方程求出加速度和初速度,再由速度位移关系公式求解有 O 与 A 的距离.【解答】解:设物体的加速度为 a,到达 A 点的速度为 v0,通过 AB 段和 BC 点所用的时间为 t, 则 l1=v0t+ at2① l1+l2=v0•2t+ a(2t)2② 联立②﹣①×2 得 a= ③ v0= ④ 设 O 与 A 的距离为 l,则有 l= ⑤将③、④两式代入⑤式得 l= .答:有 O 与 A 的距离为 l= .【点评】本题是多过程问题,除了分别对各个过程进行研究外,重要的是寻找过程之间的联系,列出关系式.本题求加速度,也用推论△x=aT2直接求解. 12.(18 分)图中滑块和小球的质量均为 m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点 O 由一不可伸长的轻绳相连,轻绳长为 1.开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘性物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,当轻绳与竖直方向的夹角 θ=60°时小球达到最高点.求(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量;(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小.【考点】53:动量守恒定律;65:动能定理;6C:机械能守恒定律.菁优网版权所有【专题】16:压轴题;52K:动量与动能定理或能的转化与守恒定律综合.【分析】(1)从小球由静止释放到滑块与挡板接触前,小球和滑块组成的系统机械能守恒、水平方向动量守恒,根据两个守恒定律列方程,求出滑块与挡板接触前小球与滑块的速度大小.根据动量定理求解挡板阻力对滑块的冲量.(2)小球从释放到第一次到达最低点的过程中,重力和绳的拉力对小球做功,根据动能定理求解绳的拉力对小球做功的大小.【解答】解:(1)对系统,设小球在最低点时速度大小为 v1,此时滑块的速度大小为 v2,滑块与挡板接触前由系统的机械能守恒定律:mgl= mv12+ mv22 ①由系统的水平方向动量守恒定律:mv1=mv2 ②对滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量为: I=mv2 ③
联立①②③解得 I=m 方向向左④(2)小球释放到第一次到达最低点的过程中,设绳的拉力对小球做功的大小为 W,对小球由动能定理: mgl+W= mv12 ⑤联立①②⑤解得:W=﹣ mgl,即绳的拉力对小球做负功,大小为 mgl.答:(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量为 I=m ,方向向左;(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小是﹣ mgl.【点评】本题是系统机械能守恒和水平方向动量守恒的类型,再加上运用动量定理求冲量、由动能定理求功,都是常用的方法和思路. 13.(22 分)如图所示,在坐标系 xOy 中,过原点的直线 OC 与 x 轴正向的夹角 φ=120°,在 OC 右侧有一匀强电场,在第二、三象限内有一匀强磁场,其上边界与电场边界重叠,右边界为 y 轴,左边界为图中平行于 y 轴的虚线,磁场的磁感应强度大小为 B,方向垂直于纸面向里.一带正电荷 q、质量为 m 的粒子以某一速度自磁场左边界上的 A 点射入磁场区域,并从 O 点射出,粒子射出磁场的速度方向与 x 轴的夹角 θ=30°,大小为 v,粒子在磁场内的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的 2 倍,粒子进入电场后,在电场力的作用下又由 O 点返回磁场区域,经过一段时间后再次离开磁场.已知粒子从 A 点射入到第二次离开磁场所用时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:(1)粒子经过 A 点时的速度方向和 A 点到 x 轴的距离;(2)匀强电场的大小和方向;(3)粒子从第二次离开磁场到再次进入电场所用的时间.【考点】AK:带电粒子在匀强电场中的运动;CI:带电粒子在匀强磁场中的运动.菁优网版权所有【专题】16:压轴题;536:带电粒子在磁场中的运动专题.【分析】(1)结合运动的轨迹图象,判断出圆周运动的圆心即两虚线的交点,再根据洛伦兹力提供向心力,粒子的速度和 A 到 y 轴的距离;(2)粒子进入电场后,在电场力的作用下又由 O 点返回磁场区域说明电场力的方向一定与运动的方向相反,则电场方向必与 v 相反;根据时间关系求出粒子在电场中运动的时间,进而求出电场的强度和方向;(3)粒子出磁场后到进入电场是匀速直线运动,根据轨迹图象,就可以求出从第二次离开磁场到再次进入电场所用的时间.【解答】解:(1)粒子第一次进入磁场时弧的半径为磁场左右边界间距的 2 倍,如图做运动的轨迹,则圆周运动的圆心即两虚线的交点.进入磁场时速度必垂直于磁场边界,由洛伦兹力提供向心力:,得:R= ,
A 点到 x 轴的距离为: ,(2)设粒子在磁场中运动的周期为 T,则:vT=2πR所以: ,在磁场中运动的时间为粒子进入电场后,在电场力的作用下又由 O 点返回磁场区域说明电场力 的方向一定与运动的方向相反,则电场方向必与 v 相反,再次进入磁场时速度方向也与 v 相反,将向 y轴负方向偏转做圆周运动,运动的轨迹如图 1 所示:运动时间为 ,则在电场中运动的时间为:那么在电场中的运动有:﹣v=v﹣ t2,求得:(3)粒子出磁场后到进入电场是匀速直线运动,达到电场的距离为 (如图 2),所用时间为答:(1)粒子经过 A 点时的速度方向平行于 X 轴,A 点到 x 轴的距离 ,(2)电场方向与 v 相反,大小 ;(3)第二次离开磁场到再次进入电场所用的时间 .
【点评】带电粒子在磁场中 的运动,正确地画出运动的轨迹是解题的关键,象该题需要两次画出不同的轨迹.题目的难度较大.
A. B.C. D.8.(6 分)一束由红、蓝两单色光组成的光线从一平板玻璃砖的上表面以入射角 θ 射入,穿过玻璃砖从下表面射出,已知该玻璃对红光的折射率为 1.5,设红光与蓝光穿过玻璃砖所需时间分别为 t1和t2,则在 θ 逐渐由 0°增大到 90°的过程中( )A.t1始终大于 t2B.t1始终小于 t2C.t1先大于后小于 t2D.t1先小于后大于 t2 二、(18 分)9.(6 分)如图所示,两个质量各为 m1和 m2的小物块 A 和 B,分别系在一条跨过定滑轮的软绳两端,已知 m1>m2.现要利用此装置验证机械能守恒定律.(1)若选定物块 A 从静止开始下落的过程进行测量,则需测量的物理量有 .①物块的质量 m1、m2;②物块 A 下落的距离及下落这段距离所用的时间;③物块 B 上升的距离及上升这段距离所用的时间;④绳子的长度.(2)为提高实验结果的准确程度.某小组同学对此实验提出如下建议:①绳的质量要轻;②在“轻质绳”的前提下绳子越长越好;③尽量保证物块沿竖直方向运动,不要摇晃;④两个物块的质量之差要尽可能小.以上建议中对提高准确程度确实有作用的是 .(3)写出一条上面没有提到的对提高实验结果准确程度有益的建议: .10.(12 分)一直流电压表 V,量程为 1V,内阻为 1000Ω,现将一个阻值在 5000﹣7000Ω 之间的固定电阻 R1与此电压表串联,以扩大电压表量程,为求得扩大后量程的准确值,再给定一直流电源(电动势 E 为 6﹣7V,内阻不计)、一阻值 R2=2000Ω 的固定电阻、两个单刀开关 S1、S2及导线若干.(1)为达到上述目的,将对应的图连成一个完整的实验电路图.(2)连线完成以后,当 S1、S2均闭合时,电压表示数为 0.90V;当 S1闭合,S2断开时,电压表示数为0.70V.由此可以计算出改装后电压表的量程为 V,电动势为 V.
11.(14 分)已知 O、A、B、C 为同一直线上的四点,AB 间的距离为 l1,BC 间的距离为 l2,一物体自 O点静止起出发,沿此直线做匀加速运动,依次经过 A、B、C 三点.已知物体通过 AB 段与通过 BC 段所用时间相等.求 O 与 A 的距离.12.(18 分)图中滑块和小球的质量均为 m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点 O 由一不可伸长的轻绳相连,轻绳长为 1.开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘性物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,当轻绳与竖直方向的夹角 θ=60°时小球达到最高点.求(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量;(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小.13.(22 分)如图所示,在坐标系 xOy 中,过原点的直线 OC 与 x 轴正向的夹角 φ=120°,在 OC 右侧有一匀强电场,在第二、三象限内有一匀强磁场,其上边界与电场边界重叠,右边界为 y 轴,左边界为图中平行于 y 轴的虚线,磁场的磁感应强度大小为 B,方向垂直于纸面向里.一带正电荷 q、质量为 m 的粒子以某一速度自磁场左边界上的 A 点射入磁场区域,并从 O 点射出,粒子射出磁场的速度方向与 x 轴的夹角 θ=30°,大小为 v,粒子在磁场内的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的 2 倍,粒子进入电场后,在电场力的作用下又由 O 点返回磁场区域,经过一段时间后再次离开磁场.已知粒子从 A 点射入到第二次离开磁场所用时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:(1)粒子经过 A 点时的速度方向和 A 点到 x 轴的距离;(2)匀强电场的大小和方向;(3)粒子从第二次离开磁场到再次进入电场所用的时间. 2008 年全国统一高考物理试卷(全国卷Ⅰ)参考答案与试题解析
一、选择题(本题共 8 小题,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分)1.(6 分)如图所示,一物体自倾角为 θ 的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角 φ 满足( )A.tanφ=sinθ B.tanφ=cosθ C.tanφ=tanθ D.tanφ=2tanθ【考点】43:平抛运动.菁优网版权所有【专题】518:平抛运动专题.【分析】φ 为速度与水平方向的夹角,tanφ 为竖直速度与水平速度之比;θ 为平抛运动位移与水平方向的夹角,tanθ 为竖直位移与水平位移之比。【解答】解:竖直速度与水平速度之比为:tanφ= ,竖直位移与水平位移之比为:tanθ= = ,故 tanφ=2tanθ,故选:D。【点评】解决本题的关键掌握速度与水平方向夹角的正切值是位移与水平方向夹角正切值的 2 倍。 2.(6 分)如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )A.向右做加速运动 B.向右做减速运动C.向左做加速运动 D.向左做匀速运动【考点】37:牛顿第二定律.菁优网版权所有【专题】522:牛顿运动定律综合专题.【分析】小球和小车具有相同的加速度,对小球运用牛顿第二定律,判断出加速度的方向,得知小车的加速度方向,从而知道小车的运动情况.【解答】解:小球与小车相对静止且弹簧处于压缩状态,知小球所受的合力向右,根据牛顿第二定律,小球的加速度方向向右,小球和小车具有相同的加速度,知小车具有向右的加速度,所以小车向右做加速运动或向左做减速运动。故 A 正确,B、C、D 错误。故选:A。【点评】解决本题的关键抓住小球和小车具有相同的加速度,运用牛顿第二定律进行求解. 3.(6 分)一列简谐横波沿 x 轴传播,周期为 T,t=0 时的波形如图所示,此时处于 x=3m 处的质点正在向上运动,若 a、b 两质点平衡位置的坐标分别为 xa=2.5m 和 xb=5.5m,则( )
A.当 a 质点处在波峰时,b 质点恰在波谷B.当 t= 时,a 质点正在向 y 轴负方向运动C.当 t= 时,b 质点正在向 y 轴负方向运动D.在某一时刻,a、b 两质点的位移和速度可能相同【考点】F4:横波的图象;F5:波长、频率和波速的关系.菁优网版权所有【分析】由波动图象,分析质点的振动情况,判断质点 a、b 的速度方向,分析两位移的关系.【解答】解:A、由图 λ=4m,xb﹣xa=3m≠ ,则 a 质点处在波峰时,b 质点不在波谷。故 A 错误。 B、简谐横波沿 x 轴负方向传播,t=0 时,a 质点正在向 y 轴正方向运动,t= 时,a 质点正在向 y轴正方向运动。故 B 错误。 C、t=0 时刻,b 点振动方向向 y 轴正方向,当 t= 时,b 质点正在向 y 轴负方向。故 C 正确。 D、由于 <xb﹣xa<λ,位移相同时,速度大小相等,方向相反,两者不可能同时相同。故 D错误。故选:C。【点评】本题考查识别、理解波动图象的能力,根据波动图象,分析质点的振动过程是应具备的能力. 4.(6 分)已知太阳到地球与地球到月球的距离的比值约为 390,月球绕地球旋转的周期约为 27 天,利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为( )A.0.2 B.2 C.20 D.200【考点】4F:万有引力定律及其应用.菁优网版权所有【专题】528:万有引力定律的应用专题.【分析】由万有引力等于向心力,分别列出太阳与月球的引力的表达式,地球与月球的引力的表达式;两式相比求得表示引力之比的表达式,再由圆周运动的向心力由万有引力来提供分别列出地球公转,月球公转的表达式.进而分析求得比值.【解答】解:太阳对月球的万有引力: ﹣﹣﹣﹣﹣﹣﹣①(r 指太阳到月球的距离) 地球对月球的万有引力: ﹣﹣﹣﹣﹣﹣②(r2指地球到月球的距离) r1表示太阳到地球的距离,因 r1=390r2,因此在估算时可以认为 r=r1(即近似认为太阳到月球的距离等于太阳到地球的距离),则由 得: = ﹣﹣﹣﹣﹣③
由圆周运动求中心天体的质量,由地球绕太阳公转: ﹣﹣﹣﹣④(T1 指地球绕太阳的公转周期 T1=365 天),由月球绕地球公转: = r2﹣﹣﹣﹣﹣﹣﹣﹣﹣⑤(T2指月球周期,T2=27 天)由 可得: ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣⑥把⑥式代入③式 可得 所以 ACD 错误,B 正确,故选:B。【点评】本题考查万有引力定律.首先要根据万有引力定律表达出太阳的地球的质量,然后再列出太阳和地球分别对月球的万有引力定律方程. 5.(6 分)三个原子核 X、Y、Z,X 核放出一个正电子后变为 Y 核,Y 核与质子发生核反应后生成 Z 核并放出一个氦核( He).则下面说法中正确的是( )A.X 核比 Z 核多一个质子B.X 核比 Z 核少一个中子C.X 核的质量数比 Z 核质量数大 3D.X 核与 Z 核的总电荷是 Y 核电荷的 2 倍【考点】JJ:裂变反应和聚变反应.菁优网版权所有【分析】根据题意写出核反应方程,再由质量守恒定律和核电荷数守恒来判断各选项.【解答】解:A、设原子核 X 的质量数为 x,电荷数为 y,根据质量数守恒和电荷数守恒,可得原子核 Y的质量数为 x,电荷数为 y﹣1,原子核 Z 的质量数为 x﹣3,电荷数为 y﹣2.由此可得 X 核的质子(y)比 Z 核的质子(y﹣2)多 2 个,故 A 错误;B、由 A 可得 X 核的中子(x﹣y)比 Z 核的中子(x﹣y﹣1)多 1 个,故 B 错误;C、X 核的质量数(x)比 Z 核的质量数(x﹣3)多 3 个,故 C 正确;D、X 核与 Z 核的总电荷(2y﹣2)是 Y 核电荷(y﹣1)的 2 倍,故 D 正确。故选:CD。【点评】本题考查了核反应方程中质量数和核电荷数守恒的知识,属于基础知识,应仔细阅读题目,一步一步向下分析. 6.(6 分)已知地球半径约为 6.4×106 m,空气的摩尔质量约为 2.9×10﹣2 kg/mol,一个标准大气压约为 1.0×105 Pa.利用以上数据可估算出地球表面大气在标准状态下的体积为( )A.4×1016 m3B.4×1018 m3C.4×1020 m3D.4×1022 m3【考点】82:阿伏加德罗常数.菁优网版权所有【专题】16:压轴题;543:阿伏伽德罗常数的应用专题.【分析】大气压强是由地球附近大气层中空气的重力产生的,根据大气压强和地球的表面积求出地球周围大气层空气分子的总质量,再求出空气体积.【解答】解:大气压强 P0= ,地球表面积 s=4πR2则地球周围空气质量为: ;由于标准状态下,一摩尔任何气体的体积都是 22.4 升,即摩尔体积为 V=22.4×10﹣3m3;
故空气密度为: ;空气的总体积为 = ;代入解得,V′=4×1018 m3故选:B。【点评】本题要注意大气压强与容器中气体压强产生的原因不同,容器中气体压强是由于大量气体分子频繁碰撞容器壁而产生的. 7.(6 分)矩形导线框 abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度 B 随时间变化的规律如图所示。若规定顺时针方向为感应电流 I 的正方向,下列各图中正确的是( )A. B.C. D.【考点】BB:闭合电路的欧姆定律;D8:法拉第电磁感应定律.菁优网版权所有【专题】16:压轴题;53B:电磁感应与图像结合.【分析】由右图可知 B 的变化,则可得出磁通量的变化情况,由楞次定律可知电流的方向;由法拉第电磁感应定律可知电动势,即可知电路中电流的变化情况;【解答】解:由图可知,0﹣1s 内,线圈中磁通量的变化率相同,故 0﹣1s 内电流的方向相同,由楞次定律可知,电路中电流方向为逆时针,即电流为负方向;同理可知,1﹣2s 内电路中的电流为顺时针,2﹣3s 内,电路中的电流为顺时针,3﹣4s 内,电路中的电流为逆时针,由 E= = 可知,电路中电流大小恒定不变。故选:D。【点评】本题要求学生能正确理解 B﹣t 图的含义,才能准确的利用楞次定律进行判定。 8.(6 分)一束由红、蓝两单色光组成的光线从一平板玻璃砖的上表面以入射角 θ 射入,穿过玻璃砖从下表面射出,已知该玻璃对红光的折射率为 1.5,设红光与蓝光穿过玻璃砖所需时间分别为 t1和t2,则在 θ 逐渐由 0°增大到 90°的过程中( )A.t1始终大于 t2B.t1始终小于 t2C.t1先大于后小于 t2D.t1先小于后大于 t2【考点】H3:光的折射定律.菁优网版权所有【专题】16:压轴题;54D:光的折射专题.
【分析】根据结合关系,结合折射定律 n= ,n= ,求出光在玻璃砖中传播的时间与折射率的关系,从而根据数学知识进行比较.【解答】解:设折射角为 α,玻璃砖的厚度为 h,由折射定律 n= ,且 n= ,在玻璃砖中的时间为 t= ,联立解得 t2∝ ,红光折射率较小,θ 为零时,t1<t2,θ 为 90°时,趋近渐近线,初步判定该函数为单调函数,通过带入 θ 为其它特殊值,仍然有 t1<t2,所以 B 选项正确。A、C、D 错误。故选:B。【点评】解决本题的关键掌握折射定律 n= ,以及光在介质中传播的速度 v= . 二、(18 分)9.(6 分)如图所示,两个质量各为 m1和 m2的小物块 A 和 B,分别系在一条跨过定滑轮的软绳两端,已知 m1>m2.现要利用此装置验证机械能守恒定律.(1)若选定物块 A 从静止开始下落的过程进行测量,则需测量的物理量有 .①物块的质量 m1、m2;②物块 A 下落的距离及下落这段距离所用的时间;③物块 B 上升的距离及上升这段距离所用的时间;④绳子的长度.(2)为提高实验结果的准确程度.某小组同学对此实验提出如下建议:①绳的质量要轻;②在“轻质绳”的前提下绳子越长越好;③尽量保证物块沿竖直方向运动,不要摇晃;④两个物块的质量之差要尽可能小.以上建议中对提高准确程度确实有作用的是 .(3)写出一条上面没有提到的对提高实验结果准确程度有益的建议: .【考点】MD:验证机械能守恒定律.菁优网版权所有【专题】13:实验题;52E:机械能守恒定律应用专题.【分析】(1)这个实验的原理是要验证 m1、m2的增加的动能和 m1、m2减少重力势能是不是相等,所以我们要测量的物理量有:物块的质量 m1、m2; 物块 A 下落的距离及下落这段距离所用的时间或物块B 上升的距离及上升这段距离所用的时间.(2)如果绳子较重,系统的重力势能就会有一部分转化为绳子的动能,造成实验误差;绳子不宜太长,长了形变对实验的影响越大;m1、m2相差越大,整体所受阻力相对于合力对运动的影响越小.物体末速度 v 是根据匀变速直线运动求出的,故要保证物体在竖直方向运动.这些都是减小系统误差,提高实验准确程度的做法. (3)多次取平均值可减少测量误差,绳子伸长量尽量小,可减少测量的高度的准确度.【解答】解:(1)通过连接在一起的 A、B 两物体验证机械能守恒定律,即验证系统的势能变化与动能变化是否相等,A、B 连接在一起,A 下降的距离一定等于 B 上升的距离;A、B 的速度大小总是相等的,故不需要测量绳子的长度和 B 上升的距离及时间.故选①②或①③均可以.(2)如果绳子较重,系统的重力势能就会有一部分转化为绳子的动能,造成实验误差;绳子不宜太长,长了形变对实验的影响越大;m1、m2相差越大,整体所受阻力相对于合力对运动的影响越小.物体
末速度 v 是根据匀变速直线运动求出的,故要保证物体在竖直方向运动.这些都是减小系统误差,提高实验准确程度的做法.故选:①③(3)实验误差来自测量:所以多次取平均值可减少测量误差,又绳子伸长量尽量小,可减少测量的高度时的误差.故答案为:(1)①②或①③; (2)①③;(3)多次取平均值可减少测量误差或绳子伸长量尽量小等.(意思对即可)【点评】此题为一验证性实验题.要求根据物理规律选择需要测定的物理量,运用实验方法判断如何减小实验误差.掌握各种试验方法是解题的关键. 10.(12 分)一直流电压表 V,量程为 1V,内阻为 1000Ω,现将一个阻值在 5000﹣7000Ω 之间的固定电阻 R1与此电压表串联,以扩大电压表量程,为求得扩大后量程的准确值,再给定一直流电源(电动势 E 为 6﹣7V,内阻不计)、一阻值 R2=2000Ω 的固定电阻、两个单刀开关 S1、S2及导线若干.(1)为达到上述目的,将对应的图连成一个完整的实验电路图.(2)连线完成以后,当 S1、S2均闭合时,电压表示数为 0.90V;当 S1闭合,S2断开时,电压表示数为0.70V.由此可以计算出改装后电压表的量程为 7 V,电动势为 6.3 V.【考点】N6:伏安法测电阻;NA:把电流表改装成电压表.菁优网版权所有【专题】13:实验题;535:恒定电流专题.【分析】构造电路,据全电欧姆定律得含有 R1,E 的方程组,可求解问题.【解答】解:(1)实验电路如图所示 若 S1与 S2都闭合:E=U1+ R1=0.90+9×10﹣4•R1﹣﹣﹣﹣﹣﹣(1) 若 S1闭合 S2断开:E=U2+ (R1+R2)=0.70+7×10﹣4•(R1+R2)﹣﹣﹣﹣(2) 量程为 U=Ig(RV+R1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3) 由(1)(2)(3)式得 U=7V E=6.3V 故答案为:(1)电路图如图所示.(2)7 6.3【点评】全电路欧姆定律要注意构造两个电路,得出方程组求解问题上. 11.(14 分)已知 O、A、B、C 为同一直线上的四点,AB 间的距离为 l1,BC 间的距离为 l2,一物体自 O点静止起出发,沿此直线做匀加速运动,依次经过 A、B、C 三点.已知物体通过 AB 段与通过 BC 段所用时间相等.求 O 与 A 的距离.【考点】1E:匀变速直线运动的位移与时间的关系.菁优网版权所有