2014年全国统一高考物理试卷(新课标ⅱ含解析版)

发布时间:2024-05-30 09:05:57浏览次数:8
2014 年全国统一高考物理试卷(新课标Ⅱ)二、选择题:本题共 8 小题,每小题 6 分,在每小题给出的四个选项中,第 14~18 题只有一项符合题目要求,第 19~21 题有多项符合题目要求.全部选对的得 6 分,选对但不全的得 3 分,有选错的得0 分.1.(6 分)甲乙两汽车在一平直公路上同向行驶,在 t=0 到 t=t1的时间内,它们的 v﹣t 图象如图所示。在这段时间内(  )A.汽车甲的平均速度比乙的大B.汽车乙的平均速度等于C.甲乙两汽车的位移相同D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大2.(6 分)取水平地面为重力势能零点,一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力,该物块落地时的速度方向与水平方向的夹角为(  )A. B. C. D.3.(6 分)一物体静止在粗糙水平地面上,现用一大小为 F1的水平拉力拉动物体,经过一段时间后其速度为 v,若将水平拉力的大小改为 F2,物体从静止开始经过同样的时间后速度变为 2v,对于上述两个过程,用 WF1、WF2分别表示拉力 F1、F2所做的功,Wf1、Wf2分别表示前两次克服摩擦力所做的功,则(  )A.WF2>4WF1,Wf2>2Wf1B.WF2>4WF1,Wf2=2Wf1C.WF2<4WF1,Wf2=2Wf1D.WF2<4WF1,Wf2<2Wf14.(6 分)如图,一质量为 M 的光滑大圆环,用一细轻杆固定在竖直平面内:套在大环上质量为 m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为 g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为(  )A.Mg﹣5mg B.Mg+mg C.Mg+5mg D.Mg+10mg5.(6 分)假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为 g0,赤道的大小为 g;地球自转的周期为 T,引力常量为 G.则地球的密度为(  )A. B.C. D.6.(6 分)关于静电场的电场强度和电势,下列说法正确的是(  )A.电场强度的方向处处与等电势面垂直B.电场强度为零的地方,电势也为零 B、根据带电粒子的半径公式: ,电子与正电子在磁场中运动轨迹的半径是否相同,与它们的速度有关,故 B 错误;C、质子与正电子的电性相同,所以它们以相同的方向进入磁场时,受到的洛伦兹力的方向相同,偏转的方向相同,仅依据粒子运动轨迹无法判断该粒子是质子还是正电子,故 C 正确;D、根据带电粒子的半径公式: ,粒子的半径与粒子的动量成正比,而不是与粒子的动能成正比;粒子的动量越大,它在磁场中的运动轨迹的半径越大。故 D 错误。故选:AC。【点评】本题就是考查左手定则的应用,掌握好左手定则即可判断粒子的受力的方向.注意正负电荷的区别.会使用粒子在磁场中做匀速圆周运动的半径公式进行判断. 8.(6 分)如图,一理想变压器原、副线圈的匝数分别为 n1、n2.原线圈通过一理想电流表 A 接正弦交流电源,一个二极管和阻值为 R 的负载电阻串联后接到副线圈的两端。假设该二极管的正向电阻为零,反向电阻为无穷大。用交流电压表测得 a、b 端和 c、d 端的电压分别为 Uab和 Ucd,则(  )A.Uab:Ucd=n1:n2B.增大负载电阻的阻值 R,电流表的读数变小C.负载电阻的阻值越小,cd 间的电压 Ucd越大D.将二极管短路,电流表的读数加倍【考点】E4:正弦式电流的最大值和有效值、周期和频率;E8:变压器的构造和原理.菁优网版权所有【专题】53A:交流电专题.【分析】假设没有二极管,则可根据理想变压器的原副线圈的功率相等,且电压与匝数成正比,电流与匝数成反比,即可求解电压关系,电流变化情况,再由二极管的单向导电性,根据副线圈的电压与时间变化规律,从而可求得结果。【解答】解:A、假设副线圈两端电压的有效值为 U2,根据理想变压器的电压与匝数成正比,即有:Uab:U2=n1:n2;而因二极管的单向导电性,cd 间电压的有效值并不等于副线圈两端的电压有效值,所以 Uab:Ucd不等于 n1:n2,故 A 错误;B、副线圈两段的电压依赖于输入电压和匝数,所以副线圈两端的电压不变,电阻增大,则电流减小,副线圈的功率减小,最后使得 输入功率减小,而输入电压不变,最后使得电流减小,所以电流表的示数减小,故 B 正确;C、cd 间的电压由原线圈的输入电压以及原、副线圈的匝数比有关,与负载电阻无关,所以 cd 间的电压 Ucd不会随着负载电阻变化,故 C 错误;D、假设副线圈两端交变电压的峰值为 Um,副线圈回路的电流峰值为 Im,则二极管短路前有:副线圈两端电压的有效值 U2= ,由 W= 计算电阻 R 的电能得:,求得 Ucd= .副线圈回路电流的有效值 I2≠ , 由 W=I2Rt 计算电阻 R 的电能得:( )2R =Icd2RT,求得 Icd= 。则 Pcd=UcdIcd≠二极管短路后有:cd 两端电压等于副线圈两端电压,即 U′cd= ,流经定值电阻 R 的电流 I′cd= .则 P′cd=U′cdI′cd= .所以 P′cd≠2Pcd。由于理想变压器原线圈上的功率与副线圈的相等,而原线圈上的电压有效值不变,所以二极管短路后的电流表读数不是二极管短路前的 2 倍。故 D 错误。故选:B。【点评】此题作为选择题的压轴题有一定的难度,也比较有新意,涉及的知识点有交变电流、理想变压器、二极管、电路的动态分析等。该题对于 D 选项的争议比较大,是个易错点。 三、非选择题:包括必考题和选考题两部分,第 22 题~第 32 题为必考题,每个试题考生都必须作答,第 33 题~第 40 题为选考题,考生根据要求作答.(一)必考题(共 129 分)9.(6 分)在伏安法测电阻的实验中,待测电阻 Rx约为 200Ω,电压表 的内阻约为 2kΩ,电流表的内阻约为 10Ω,测量电路中电流表的连接方式如图(a)或图(b)所示,结果由公式 Rx= 计算得出,式中 U 与 I 分别为电压表和电流表的示数。若将图(a)和图(b)中电路测得的电阻值分别极记为 Rx1和 Rx2,则  R x1 (填“Rx1”或“Rx2”)更接近待测电阻的真实值,且测量值 Rx1 大于(填“大于”、“等于”或“小于”)真实值,测量值 Rx2 小于 (填“大于”、“等于”或“小于”)真实值。【考点】N6:伏安法测电阻.菁优网版权所有【专题】13:实验题.【分析】本题的关键是明确电流表内外接法的选择方法:当满足 时,电流表应用外接法,根据串并联规律写出真实值表达式,比较可知,测量值小于真实值;当满足 时,电流表应用内接法,根据串并联规律写出真实值表达式,比较可知,测量值大于真实值。【解答】解:由于待测电阻满足 ,所以电流表应用内接法,即 更接近真实值; 根据串并联规律可知,采用内接法时真实值应为: = ,即测量值大于真实值;采用外接法时,真实值应为: ,即测量值小于真实值。故答案为: ,大于,小于。【点评】应明确:电流表内外接法的选择方法是:当满足 时,电流表应用外接法,此时测量值小于真实值;当满足 时,电流表应用内接法,此时测量值大于真实值。 10.(9 分)某实验小组探究弹簧的劲度系数 k 与其长度(圈数)的关系。实验装置如图(a)所示:一均匀长弹簧竖直悬挂,7 个指针 P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60 圈处:通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向 0 刻度。设弹簧下端未挂重物时,各指针的位置记为 x0;挂有质量为 0.100kg 的砝码时,各指针的位置记为 x。测量结果及部分计算结果如表所示(n 为弹簧的圈数,取重力加速度为 9.80m/s2)。已知实验所用弹簧总圈数为 60,整个弹簧的自由长度为 11.88cm。P1P2P3P4P5P6x0(cm) 2.04 4.06 6.06 8.05 10.08 12.01x(cm) 2.64 5.26 7.81 10.30 12.93 15.41n 10 20 30 40 50 60k(N/m) 163 ① 56.0 43.6 33.8 28.81/k(m/N) 0.0061 ② 0.0179 0.0229 0.0296 0.0347(1)将表中数据补充完整:①  81.7   ②  0.0122   。(2)以 n 为横坐标,1/k 为纵坐标,在图(b)给出的坐标纸上画出 1/k﹣n 图象。(3)图(b)中画出的直线可近似认为通过原点,若从实验中所用的弹簧截取圈数为 n 的一段弹簧,该弹簧的劲度系数 k 与其圈数 n 的关系的表达式为 k=  (在 ~ 之间都可以) N/m;该弹簧的劲度系数 k 与其自由长度 l0(单位为 m)的关系的表达式为 k= (在 ~ 之间都可以) N/m。 【考点】M7:探究弹力和弹簧伸长的关系.菁优网版权所有【专题】13:实验题.【分析】(1)弹簧的圈数相同的情况下,劲度系数是相同的,根据 P2的示数,利用胡克定律即可以求得此时的劲度系数的大小;(2)根据表中的数据直接画图即可;【解答】解:(1)根据 P2的示数可知,P2部分的原长为 4.06cm,拉伸后的长度为 5.26cm,根据胡克定律可得,k= = =81.7N/m,倒数为 =0.0122;(2)根据表中的数据画出图象,如图所示:(3)根据得到的图象可知,= , 解得,k= ;从题中的数据可以发现,劲度系数与自由长度的乘积近似相等,即 kl1=3.47,所以弹簧的劲度系数 k 与其自由长度 l1(单位为 m)的关系的表达式为 k= 。故答案为:(1)81.7,0.0122,(2)如图所示;(3) (在 ~ 之间都可以);(在 ~ 之间都可以)。【点评】本题关键根据胡克定律得到弹簧弹力和长度的关系公式,分析得到图象的物理意义,最后结合图象求解劲度系数。 11.(15 分)2012 年 10 月,奥地利极限运动员菲利克斯•鲍姆加特纳乘热气球升至约 39km 的高空后跳下,经过 4 分 20 秒到达距地面约 1.5km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录,取重力加速度的大小 g=10m/s2.(1)忽略空气阻力,求该运动员从静止开始下落至 1.5km 高度处所需的时间及其在此处速度的大小;(2)实际上,物体在空气中运动时会受到空气的阻力,高速运动时所受阻力的大小可近似表示为f=kv2,其中 v 为速率,k 为阻力系数,其数值与物体的形状、横截面积及空气密度有关.已知该运动员在某段时间内高速下落的 v﹣t 图象如图所示,若该运动员和所穿装备的总质量 m=100kg,试估算该运动员在达到最大速度时所受阻力的阻力系数.(结果保留 1 位有效数字)【考点】1E:匀变速直线运动的位移与时间的关系;37:牛顿第二定律.菁优网版权所有【专题】511:直线运动规律专题.【分析】(1)忽略空气阻力,运动员做自由落体运动,根据速度时间关系公式和位移时间关系公式列式后联立求解即可;(2)由图象得到最大速度,然后根据平衡条件列式求解即可.【解答】解:(1)设运动员从开始自由下落至 1.5km 高度处的时间为 t,下落距离为 S,在 1.5km 高度处的速度为 v,根据运动学公式,有:v=gt ① s= ②根据题意,有:s=39km﹣1.5km=37.5km=37500m ③联立①②③解得:t=86.6≈87s,v=870m/s;(2)该运动员达到最大速度 vmax时,加速度为零,根据牛顿第二定律,有:mg=k ④由所给的 v﹣t 图象可读出:vmax≈360m/s ⑤联立④⑤解得:k=0.008kg/m.【点评】本题关键是明确运动员的受力情况和运动情况,知道当阻力与重力平衡时,运动员的速度达到最大值,不难. 12.半径分别为 r 和 2r 的同心圆形导轨固定在同一水平面内,一长为 r、质量为 m 且质量分布均匀的直导体棒 AB 置于圆导轨上面,BA 的延长线通过圆导轨中心 O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为 B,方向竖直向下,在内圆导轨的 C 点和外圆导轨的 D 点之间接有一阻值为 R 的电阻(图中未画出).直导体棒在水平外力作用下以速度 ω 绕 O 逆时针匀速转动、转动过程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩擦因数为 μ,导体棒和导轨的电阻均可忽略,重力加速度大小为 g.求:(1)通过电阻 R 的感应电流的方向和大小;(2)外力的功率.【考点】D9:导体切割磁感线时的感应电动势.菁优网版权所有【专题】53C:电磁感应与电路结合.【分析】(1)由 E= BL2ω 求出感应电动势,由欧姆定律求出电流,由右手定则判断出感应电流方向;(2)外加机械功率等于电阻器上电功率与克服摩擦力做功的功率之和,根据能量转化守恒定律求解杆ab 克服摩擦力做功的功率.【解答】解:(1)AB 中感应电动势的大小为 E= B(2r)2ω﹣ Br2ω=1.5Br2ω,感应电流大小:I= = ;由右手定则判断可知,感应电流的方向是从 B 端流向 A 端,所以通过电阻 R 的电流方向为:C→D.(2)设导体棒克服摩擦力做功的功率为 P,在竖直方向有:mg﹣N=0,由于质量分布均匀,内、外圆导轨对导体棒的正压力相等,故两导轨对导体棒的摩擦力均为 f=μmg, 所以 P=f =μmg× (2r+r)ω= μmgωr,电功率:P电=I2R= ,由能量守恒定律得:P外=P+P电,解得:P外= μmgωr+ .答:(1)通过电阻 R 的感应电流的方向:C→D,大小: ;(2)外力的功率为 μmgωr+ .【点评】本题的关键要掌握转动切割感应电动势公式 E= BL2ω,知道能量是如何转化的. 四、选考题:选修 3-3(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)13.下列说法正确的是(  )A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.空气的小雨滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡温度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果【考点】84:布朗运动;86:分子间的相互作用力;92:* 晶体和非晶体.菁优网版权所有【分析】布朗运动反映了液体分子的无规则运动,不能反映花粉分子的热运动;液体表面存在表面张力,能使空气的小雨滴呈球形;液晶具有各向异性的特点;高原地区水的沸点较低,这是高原地区气压低的缘故;湿温度计下端包有湿纱布,湿纱布上的水分要蒸发,蒸发是一种汽化现象,汽化要吸热,所以湿温度计的示数较低.【解答】解:A、布朗运动是悬浮在水中花粉的无规则运动,由于花粉是由大量花粉分子组成的,所以布朗运动不能反映了花粉分子的热运动,故 A 错误;B、空气的小雨滴呈球形是水的表面张力使雨滴表面有收缩的趋势的结果,故 B 正确;C、液晶像液体一样具有流动性,而其光学性质与某些晶体相似具有各向异性,彩色液晶显示器利用了液晶的光学性质具有各向异性的特点,故 C 正确;D、高原地区水的沸点较低,这是高原地区气压较低的缘故,故 D 错误;E、干湿泡温度计的湿泡显示的温度低于干泡显示的温度,是因为湿泡外纱布中的水蒸发吸热,故 E 正确。故选:BCE。【点评】本题重点要掌握布朗运动的实质,液体表面张力的形成的原因,以及晶体的物理性质. 14.如图,两气缸 AB 粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A 的直径为 B 的 2倍,A 上端封闭,B 上端与大气连通;两气缸除 A 顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝热轻活塞 a、b,活塞下方充有氮气,活塞 a 上方充有氧气;当大气压为 P0,外界和气缸内气体温度均为 7℃且平衡时,活塞 a 离气缸顶的距离是气缸高度的 ,活塞 b 在气缸的正中央。(ⅰ)现通过电阻丝缓慢加热氮气,当活塞 b 升至顶部时,求氮气的温度; (ⅱ)继续缓慢加热,使活塞 a 上升,当活塞 a 上升的距离是气缸高度的 时,求氧气的压强。【考点】99:理想气体的状态方程.菁优网版权所有【专题】54B:理想气体状态方程专题.【分析】(ⅰ)现通过电阻丝缓慢加热氮气,当活塞 b 升至顶部的过程中,a 活塞不动,活塞 a、b 下方的氮气经历等压过程,分析出初态和末态的体积和温度,由盖•吕萨克定律求解。(2)继续缓慢加热,使活塞 a 上升,活塞 a 上方的氧气经历等温过程,根据玻意耳定律求解即可。【解答】解:(ⅰ)活塞 b 升至顶部的过程中,活塞 a 不动,活塞 a、b 下方的氮气经历等压过程。设气缸 A 的容积为 V0,氮气初态体积为 V1,温度为 T1,末态体积为 V2,温度为 T2,按题意,气缸 B 的容积为 V0,则得: V1= V0+ • V0= V0,① V2= V0+ V0=V0,②根据盖•吕萨克定律得: = ,③由①②③式和题给数据得: T2=320K; ④(ⅱ)活塞 b 升至顶部后,由于继续缓慢加热,活塞 a 开始向上移动,直至活塞上升的距离是气缸高度的 时,活塞 a 上方的氧气经历等温过程,设氧气初态体积为 V1′,压强为 P1′,末态体积为V2′,压强为 P2′,由题给数据有,V1′= V0,P1′=P0,V2′= V0,⑤由玻意耳定律得:P1′V1′=P2′V2′,⑥由⑤⑥式得:P2′= P0.⑦答:(ⅰ)氮气的温度为 320K;(ⅱ)氧气的压强为 P0。【点评】本题涉及两部分气体状态变化问题,除了隔离研究两部分气体之外,关键是把握它们之间的联系,比如体积关系、温度关系及压强关系。 选修 3-4(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)15.图(a)为一列简谐横波在 t=0.10s 时刻的波形图,P 是平衡位置在 x=1.0m 处的质点,Q 是平衡位置在 x=4.0m 处的质点;图(b)为质点 Q 的振动图象,下列说法正确的是(  ) A.在 t=0.10s 时,质点 Q 向 y 轴正方向运动B.在 t=0.25s 时,质点 P 的加速度方向与 y 轴正方向相同C.从 t=0.10s 到 t=0.25s,该波沿 x 轴负方向传播了 6mD.从 t=0.10s 到 t=0.25s,质点 P 通过的路程为 30cmE.质点 Q 简谐运动的表达式为 y=0.10sin10πt(国际单位)【考点】F4:横波的图象;F5:波长、频率和波速的关系.菁优网版权所有【专题】51D:振动图像与波动图像专题.【分析】根据甲、乙两图可以读出该波的波长和周期,从而求出波速,t=0.10s 时 Q 点在平衡位置上,由乙图知下一时刻向下振动,从而确定了该波向左传播。根据时间与周期的关系,分析质点 P 的位置和加速度,求出通过的路程。根据 x=vt 求解波传播的距离。根据图象读出振幅 A,结合数学知识写出 Q 点的振动方程。【解答】解:A、图(b)为质点 Q 的振动图象,则知在 t=0.10s 时,质点 Q 正从平衡位置向波谷运动,所以点 Q 向 y 轴负方向运动,故 A 错误;B、在 t=0.10s 时,质点 Q 沿 y 轴负方向运动,根据波形平移法可知该波沿 x 轴负方向传播,此时 P 点正向上运动。由图 b 读出周期 T=0.2s,从 t=0.10s 到 t=0.25s 经过的时间为△t=0.15s= T,则在 t=0.25s 时,质点 P位于 x 轴下方,加速度方向与 y 轴正方向相同,故 B 正确;C、由甲图知波长 λ=8m,则波速为:v= = m/s=40m/s,从 t=0.10s 到=0.25s 经过的时间为△t=0.15s,该波沿 x 轴负方向传播的距离为△x=v△t=40×0.15m=6m,故 C 正确;D、从 t=0.10s 到=0.25s 经过的时间为△t=0.15s= T,由于 t=0.10s 时刻质点 P 不在平衡位置或波峰、波谷处,所以质点 P 通过的路程不是 3A=30cm,故 D 错误;E、质点 Q 简谐运动的表达式为 y=Asin t=0.1sin t m=y=0.10sin10πt(m),故 E 正确。故选:BCE。【点评】本题有一定的综合性,考查了波动和振动图象问题,关键是会根据振动情况来判断波的传播方向,抓住振动图象和波动图象之间的内在联系。要知道质点做简谐运动时,只有在平衡位置或波峰、波谷处的质点,在 个周期内振动的路程才是 3A。 16.一厚度为 h 的大平板玻璃水平放置,其下表面贴有一半径为 r 的圆形发光面.在玻璃板上表面放置一半径为 R 的圆纸片,圆纸片与圆形发光面的中心在同一竖直线上.已知圆纸片恰好能完全挡住从圆形发光面发出的光线(不考虑反射),求平板玻璃的折射率.【考点】H3:光的折射定律.菁优网版权所有【专题】54D:光的折射专题.【分析】根据题意作出光路图,设 S 点为圆形发光面边缘上一点.由该点发出的光线能射出玻璃板的范围由临界光线 SA 确定,当入射角大于临界角 C 时,光线就不能射出玻璃板了.根据折射定律和几何知识结合进行求解.【解答】解:根据题述,作出光路图如图所示,S 点为圆形发光面边缘上一点.在 A 点光线恰好发生全反射,入射角等于临界角 C.图中△r=htanC, 由 sinC= 和几何知识得:sinC= =解得:△r= ,故应贴圆纸片的最小半径 R=r+△r=r+ .解得:n= .答:平板玻璃的折射率为 .【点评】本题关键要理解看不到圆形发光面的原因是由于发生了全反射,再作出光路图,运用折射定律和几何知识结合进行求解. 选修 3-5(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)17.在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用.下列说法符合历史事实的是(  )A.密立根通过油滴实验测得了基本电荷的数值B.贝克勒尔通过对天然放射性现象的研究,发现了原子中存在原子核C.居里夫妇从沥青铀矿中分离出了钋(P0)和镭(Ra)两种新元素D.卢瑟福通过 a 粒子散射实验,证实了在原子核内存在质子E.汤姆孙通过阴极射线在电场和在磁场中的偏转实验,发现了阴极射线是由带负电的粒子组成,并测出了该粒子的比荷【考点】1U:物理学史.菁优网版权所有【分析】本题是物理学史问题,根据密立根、贝克勒尔、居里夫妇、卢瑟福、汤姆孙等人对物理学发展的贡献进行解答.【解答】解:A、密立根通过油滴实验测得了基本电荷的数值 e≈1.6×10﹣19C,故 A 正确;B、贝克勒尔通过对天然放射性现象的研究,证明原子核有复杂结构,α 粒子散射实验说明原子中存在原子核,故 B 错误;C、居里夫妇从沥青铀矿中分离出了钋(P0)和镭(Ra)两种新元素,故 C 正确;D、卢瑟福通过 а 粒子散射实验,证实了原子是由原子核和核外电子组成的,而不能说明原子核内存在质子,故 D 错误;E、汤姆孙通过阴极射线在电场和在磁场中的偏转实验,发现了阴极射线是由带负电的粒子组成,并测出该粒子的比荷,故 E 正确。故选:ACE。【点评】解决本题的关键是掌握原子物理学史,记牢著名科学家的物理学成就.  C.随着电场强度的大小逐渐减小,电势也逐渐降低D.任一点的电场强度总是指向该点电势降落的方向7.(6 分)如图所示为某磁谱仪部分构件的示意图,图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹,宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是(  )A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中的运动轨迹的半径越小8.(6 分)如图,一理想变压器原、副线圈的匝数分别为 n1、n2.原线圈通过一理想电流表 A 接正弦交流电源,一个二极管和阻值为 R 的负载电阻串联后接到副线圈的两端。假设该二极管的正向电阻为零,反向电阻为无穷大。用交流电压表测得 a、b 端和 c、d 端的电压分别为 Uab和 Ucd,则(  )A.Uab:Ucd=n1:n2B.增大负载电阻的阻值 R,电流表的读数变小C.负载电阻的阻值越小,cd 间的电压 Ucd越大D.将二极管短路,电流表的读数加倍 三、非选择题:包括必考题和选考题两部分,第 22 题~第 32 题为必考题,每个试题考生都必须作答,第 33 题~第 40 题为选考题,考生根据要求作答.(一)必考题(共 129 分)9.(6 分)在伏安法测电阻的实验中,待测电阻 Rx约为 200Ω,电压表 的内阻约为 2kΩ,电流表的内阻约为 10Ω,测量电路中电流表的连接方式如图(a)或图(b)所示,结果由公式 Rx= 计算得出,式中 U 与 I 分别为电压表和电流表的示数。若将图(a)和图(b)中电路测得的电阻值分别极记为 Rx1和 Rx2,则   (填“Rx1”或“Rx2”)更接近待测电阻的真实值,且测量值 Rx1  (填“大于”、“等于”或“小于”)真实值,测量值 Rx2   (填“大于”、“等于”或“小于”)真实值。10.(9 分)某实验小组探究弹簧的劲度系数 k 与其长度(圈数)的关系。实验装置如图(a)所示: 18.利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有 A、B 两个滑块,滑块 A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块 A 质量 m1=0.310kg,滑块 B 的质量 m2=0.108kg,遮光片的宽度 d=1.00cm;打点计时器所用的交流电的频率为 f=50Hz.将光电门固定在滑块 B 的右侧,启动打点计时器,给滑块 A 一向右的初速度,使它与B相碰;碰后光电计时器显示的时间为△tB=3.500ms,碰撞前后打出的纸带如图(b)所示.若实验允许的相对误差绝对值(| |×100%)最大为 5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.【考点】ME:验证动量守恒定律.菁优网版权所有【专题】13:实验题.【分析】根据图示纸带求出滑块的速度,然后求出碰撞前后的动量,根据题目要求判断动量是否守恒.【解答】解:打点计时器的打点时间间隔 t= = =0.02s,由图(b)所示纸带可知,碰撞前 A 的速度:vA= = =2m/s,碰撞后 A 的速度 vA′= =0.97m/s,碰撞后 B 的速度:vB′= = ≈2.86m/s,碰撞前后系统总动量分别为:p=m1vA=0.31×2=0.62kg•m/s,p′=m1vA′+m2vB′=0.31×0.97+0.108×2.86≈0.61kg•m/s,绝对误差:| |×100%=| |×100%≈1.6%<5%,由此可知,在误差范围内验证了动量守恒定律.答:在误差范围内验证了动量守恒定律,证明过程如上所述.【点评】本题考查了验证动量守恒定律实验,由纸带求出滑块速度是正确解题的关键、应用动量计算公式即可正确解题.  一均匀长弹簧竖直悬挂,7 个指针 P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60 圈处:通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向 0 刻度。设弹簧下端未挂重物时,各指针的位置记为 x0;挂有质量为 0.100kg 的砝码时,各指针的位置记为 x。测量结果及部分计算结果如表所示(n 为弹簧的圈数,取重力加速度为 9.80m/s2)。已知实验所用弹簧总圈数为 60,整个弹簧的自由长度为 11.88cm。P1P2P3P4P5P6x0(cm) 2.04 4.06 6.06 8.05 10.08 12.01x(cm) 2.64 5.26 7.81 10.30 12.93 15.41n 10 20 30 40 50 60k(N/m) 163 ① 56.0 43.6 33.8 28.81/k(m/N) 0.0061 ② 0.0179 0.0229 0.0296 0.0347(1)将表中数据补充完整:①   ②   。(2)以 n 为横坐标,1/k 为纵坐标,在图(b)给出的坐标纸上画出 1/k﹣n 图象。(3)图(b)中画出的直线可近似认为通过原点,若从实验中所用的弹簧截取圈数为 n 的一段弹簧,该弹簧的劲度系数 k 与其圈数 n 的关系的表达式为 k=   N/m;该弹簧的劲度系数 k 与其自由长度 l0(单位为 m)的关系的表达式为 k=   N/m。11.(15 分)2012 年 10 月,奥地利极限运动员菲利克斯•鲍姆加特纳乘热气球升至约 39km 的高空后跳下,经过 4 分 20 秒到达距地面约 1.5km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录,取重力加速度的大小 g=10m/s2. (1)忽略空气阻力,求该运动员从静止开始下落至 1.5km 高度处所需的时间及其在此处速度的大小;(2)实际上,物体在空气中运动时会受到空气的阻力,高速运动时所受阻力的大小可近似表示为f=kv2,其中 v 为速率,k 为阻力系数,其数值与物体的形状、横截面积及空气密度有关.已知该运动员在某段时间内高速下落的 v﹣t 图象如图所示,若该运动员和所穿装备的总质量 m=100kg,试估算该运动员在达到最大速度时所受阻力的阻力系数.(结果保留 1 位有效数字)12.半径分别为 r 和 2r 的同心圆形导轨固定在同一水平面内,一长为 r、质量为 m 且质量分布均匀的直导体棒 AB 置于圆导轨上面,BA 的延长线通过圆导轨中心 O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为 B,方向竖直向下,在内圆导轨的 C 点和外圆导轨的 D 点之间接有一阻值为 R 的电阻(图中未画出).直导体棒在水平外力作用下以速度 ω 绕 O 逆时针匀速转动、转动过程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩擦因数为 μ,导体棒和导轨的电阻均可忽略,重力加速度大小为 g.求:(1)通过电阻 R 的感应电流的方向和大小;(2)外力的功率. 四、选考题:选修 3-3(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)13.下列说法正确的是(  )A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.空气的小雨滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.高原地区水的沸点较低,这是高原地区温度较低的缘故E.干湿泡温度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果14.如图,两气缸 AB 粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A 的直径为 B 的 2倍,A 上端封闭,B 上端与大气连通;两气缸除 A 顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝热轻活塞 a、b,活塞下方充有氮气,活塞 a 上方充有氧气;当大气压为 P0,外界和气缸内气体温度均为 7℃且平衡时,活塞 a 离气缸顶的距离是气缸高度的 ,活塞 b 在气缸的正中央。 (ⅰ)现通过电阻丝缓慢加热氮气,当活塞 b 升至顶部时,求氮气的温度;(ⅱ)继续缓慢加热,使活塞 a 上升,当活塞 a 上升的距离是气缸高度的 时,求氧气的压强。 选修 3-4(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)15.图(a)为一列简谐横波在 t=0.10s 时刻的波形图,P 是平衡位置在 x=1.0m 处的质点,Q 是平衡位置在 x=4.0m 处的质点;图(b)为质点 Q 的振动图象,下列说法正确的是(  )A.在 t=0.10s 时,质点 Q 向 y 轴正方向运动B.在 t=0.25s 时,质点 P 的加速度方向与 y 轴正方向相同C.从 t=0.10s 到 t=0.25s,该波沿 x 轴负方向传播了 6mD.从 t=0.10s 到 t=0.25s,质点 P 通过的路程为 30cmE.质点 Q 简谐运动的表达式为 y=0.10sin10πt(国际单位)16.一厚度为 h 的大平板玻璃水平放置,其下表面贴有一半径为 r 的圆形发光面.在玻璃板上表面放置一半径为 R 的圆纸片,圆纸片与圆形发光面的中心在同一竖直线上.已知圆纸片恰好能完全挡住从圆形发光面发出的光线(不考虑反射),求平板玻璃的折射率. 选修 3-5(填正确答案标号,选对 1 个给 2 分,选对 2 个得 4 分,选对 3 个得 5 分,每选错 1 个扣 3 分,最低得分 0 分)17.在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用.下列说法符合历史事实的是(  )A.密立根通过油滴实验测得了基本电荷的数值B.贝克勒尔通过对天然放射性现象的研究,发现了原子中存在原子核C.居里夫妇从沥青铀矿中分离出了钋(P0)和镭(Ra)两种新元素D.卢瑟福通过 a 粒子散射实验,证实了在原子核内存在质子E.汤姆孙通过阴极射线在电场和在磁场中的偏转实验,发现了阴极射线是由带负电的粒子组成,并测出了该粒子的比荷18.利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有 A、B 两个滑块,滑块 A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块 A 质量 m1=0.310kg,滑块 B 的质量 m2=0.108kg,遮光片的宽度 d=1.00cm;打点计时器所用的交流电的频率为 f=50Hz.将光电门固定在滑块 B 的右侧,启动打点计时器,给滑块 A 一向右的初速度,使它与B相碰;碰后光电计时器显示的时间为△tB=3.500ms,碰撞前后打出的纸带如图(b)所示. 若实验允许的相对误差绝对值(| |×100%)最大为 5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程. 2014 年全国统一高考物理试卷(新课标Ⅱ)参考答案与试题解析 二、选择题:本题共 8 小题,每小题 6 分,在每小题给出的四个选项中,第 14~18 题只有一项符合题目要求,第 19~21 题有多项符合题目要求.全部选对的得 6 分,选对但不全的得 3 分,有选错的得0 分.1.(6 分)甲乙两汽车在一平直公路上同向行驶,在 t=0 到 t=t1的时间内,它们的 v﹣t 图象如图所示。在这段时间内(  )A.汽车甲的平均速度比乙的大B.汽车乙的平均速度等于C.甲乙两汽车的位移相同D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大【考点】19:平均速度;1I:匀变速直线运动的图像.菁优网版权所有【专题】512:运动学中的图像专题.【分析】在速度时间图象中,某一点代表此时刻的瞬时速度,图象与坐标轴围成面积代表位移,时间轴上方位移为正,时间轴下方位移为负。平均速度等于位移与时间的比值。【解答】解:A、C、平均速度等于位移与时间的比值,在 v﹣t 图象中,图形的面积代表位移的大小,根据图象可知道,甲的位移大于乙的位移,由于时间相同,所以汽车甲的平均速度比乙的大,故 A正确,C 错误;B、由于乙车做变减速运动,平均速度不等于 ,故 B 错误;D、因为切线的斜率等于物体的加速度,汽车甲和乙的加速度大小都是逐渐减小,故 D 错误。故选:A。【点评】本题是为速度﹣﹣时间图象的应用,要明确斜率的含义,知道在速度﹣﹣时间图象中图象与 坐标轴围成的面积的含义。 2.(6 分)取水平地面为重力势能零点,一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力,该物块落地时的速度方向与水平方向的夹角为(  )A. B. C. D.【考点】43:平抛运动;6C:机械能守恒定律.菁优网版权所有【专题】518:平抛运动专题.【分析】根据机械能守恒定律,以及已知条件:抛出时动能与重力势能恰好相等,分别列式即可求出落地时速度与水平速度的关系,从而求出物块落地时的速度方向与水平方向的夹角.【解答】解:设抛出时物体的初速度为 v0,高度为 h,物块落地时的速度大小为 v,方向与水平方向的夹角为 α.根据机械能守恒定律得:+mgh= ,据题有: =mgh,联立解得:v= ,则 cosα= = ,得:α= 。故选:B。【点评】解决本题的关键会熟练运用机械能守恒定律处理平抛运动,并要掌握平抛运动的研究方法:运动的分解. 3.(6 分)一物体静止在粗糙水平地面上,现用一大小为 F1的水平拉力拉动物体,经过一段时间后其速度为 v,若将水平拉力的大小改为 F2,物体从静止开始经过同样的时间后速度变为 2v,对于上述两个过程,用 WF1、WF2分别表示拉力 F1、F2所做的功,Wf1、Wf2分别表示前两次克服摩擦力所做的功,则(  )A.WF2>4WF1,Wf2>2Wf1B.WF2>4WF1,Wf2=2Wf1C.WF2<4WF1,Wf2=2Wf1D.WF2<4WF1,Wf2<2Wf1【考点】62:功的计算;65:动能定理.菁优网版权所有【专题】52B:功的计算专题.【分析】根据动能定理,结合运动学公式,求出滑动摩擦力做功,从而求得结果。【解答】解:由题意可知,两次物体均做匀加速运动,则在同样的时间内,它们的位移之比为 S1:S2==1:2;两次物体所受的摩擦力不变,根据力做功表达式,则有滑动摩擦力做功之比 Wf1:Wf2=fS1:fS2=1:2;再由动能定理,则有:WF﹣Wf= ;可知,WF1﹣Wf1= ;WF2﹣Wf2=4× ;由上两式可解得:WF2=4WF1﹣2Wf1,故 C 正确,ABD 错误;故选:C。【点评】考查做功表达式的应用,掌握动能定理的内容,注意做功的正负。  4.(6 分)如图,一质量为 M 的光滑大圆环,用一细轻杆固定在竖直平面内:套在大环上质量为 m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为 g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为(  )A.Mg﹣5mg B.Mg+mg C.Mg+5mg D.Mg+10mg【考点】37:牛顿第二定律;4A:向心力.菁优网版权所有【专题】519:匀速圆周运动专题.【分析】根据牛顿第二定律求出小环运动到最低点时,大环对它的拉力,再用隔离法对大环分析,求出大环对轻杆的拉力大小.【解答】解:小环在最低点时,根据牛顿第二定律得:F﹣mg=m ,得:F=mg+m ,小环从最高到最低,由动能定理,则有: ;对大环分析,有:T=F+Mg=m(g+ )+Mg=5mg+Mg.故 C 正确,A、B、D 错误。故选:C。【点评】解决本题的关键搞清小环做圆周运动向心力的来源,运用牛顿第二定律进行求解. 5.(6 分)假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为 g0,赤道的大小为 g;地球自转的周期为 T,引力常量为 G.则地球的密度为(  )A. B.C. D.【考点】4F:万有引力定律及其应用.菁优网版权所有【专题】528:万有引力定律的应用专题.【分析】根据万有引力等于重力,则可列出物体在两极的表达式,再由引力与支持力的合力提供向心力,列式综合可求得地球的质量,最后由密度公式,即可求解。【解答】解:在两极,引力等于重力,则有:mg0=G ,由此可得地球质量 M= ,在赤道处,引力与支持力的合力提供向心力,由牛顿第二定律,则有:G ﹣mg=m , 而密度公式 ,ρ= = ,故 B 正确,ACD 错误;故选:B。【点评】考查万有引力定律,掌握牛顿第二定律的应用,注意地球两极与赤道的重力的区别,知道密度表达式。 6.(6 分)关于静电场的电场强度和电势,下列说法正确的是(  )A.电场强度的方向处处与等电势面垂直B.电场强度为零的地方,电势也为零C.随着电场强度的大小逐渐减小,电势也逐渐降低D.任一点的电场强度总是指向该点电势降落的方向【考点】A6:电场强度与电场力;AC:电势.菁优网版权所有【专题】532:电场力与电势的性质专题.【分析】电场强度与电势没有直接关系;电场强度的方向与等势面垂直,电场强度的方向是电势降低最快的方向;根据这些知识进行解答.【解答】解:A、电场线与等势面垂直,而电场强度的方向为电场线的方向,所以电场强度的方向与等势面垂直,故 A 正确;B、电场强度与电势没有直接关系,电场强度为零时,电势不一定为零;电势为零,电场强度不一定为零,故 B 错误;C、根据沿着电场线的方向,电势逐渐降低,与电场强度的大小无关,故 C 错误;D、顺着电场线方向电势降低,故 D 正确。故选:AD。【点评】明确电场强度与电势无直接关系,知道电场强度的方向是电势降低最快的方向,属于基础题. 7.(6 分)如图所示为某磁谱仪部分构件的示意图,图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹,宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是(  )A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中的运动轨迹的半径越小【考点】CI:带电粒子在匀强磁场中的运动.菁优网版权所有【分析】左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.根据左手定则的内容判断安培力的方向,当然也可以判定洛伦兹力的方向.根据粒子的半径公式判断 BD 选项.【解答】解:A、由于电子与正电子的电性相反,所以它们以相同的方向进入磁场时,受到的洛伦兹力的方向相反,偏转的方向相反,故 A 正确;
文档格式: docx,价格: 5下载文档
返回顶部