2015年山东省高考物理试卷
发布时间:2024-06-13 10:06:17浏览次数:252015 年山东省高考物理试卷 一、选择题(共 7 小题,每小题 6 分,共 42 分。每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分。)1.(6 分)距地面高 5m 的水平直轨道上 A、B 两点相距 2m,在 B 点用细线悬挂一小球,离地高度为h,如图.小车始终以 4m/s 的速度沿轨道匀速运动,经过 A 点时将随车携带的小球由轨道高度自由卸下,小车运动至 B 点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小 g=10m/s2.可求得 h 等于( )A.1.25m B.2.25m C.3.75m D.4.75m2.(6 分)如图,拉格朗日点 L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点 L1建立空间站,使其与月球同周期绕地球运动,以 a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( )A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a13.(6 分)如图,滑块 A 置于水平地面上,滑块 B 在一水平力作用下紧靠滑块 A(A、B 接触面竖直),此时 A 恰好不滑动,B 刚好不下滑。已知 A 与 B 间的动摩擦因数为 μ1,A 与地面间的动摩擦因数为 μ2,最大静摩擦力等于滑动摩擦力。A 与 B 的质量之比为( )A. B.C. D.4.(6 分)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动,现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。在圆盘减速过程中,以下说法正确的是( )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动5.(6 分)直角坐标系 xOy 中,M、N 两点位于 x 轴上,G、H 两点坐标如图.M、N 两点各固定一负点电荷,一电量为 Q 的正点电荷置于 O 点时,G 点处的电场强度恰好为零.静电力常量用 k 表示.若将
位移 , ~T 时间内,微粒的加速度 a= ,方向竖直向上,微粒在竖直方向上做匀减速运动,T 时刻竖直分速度为零,所以末速度的方向沿水平方向,大小为 v0,故 A 错误,B 正确。C、微粒在竖直方向上向下运动,位移大小为 ,则重力势能的减小量为 ,故 C 正确。D、在 ~ 内和 ~T 时间内竖直方向上的加速度大小相等,方向相反,时间相等,则位移的大小相等,为 ,整个过程中克服电场力做功为 ,故 D 错误。故选:BC。【点评】解决本题的关键知道微粒在各段时间内的运动规律,抓住等时性,结合牛顿第二定律和运动学公式进行求解。知道在 ~ 内和 ~T 时间内竖直方向上的加速度大小相等,方向相反,时间相等,位移的大小相等。 二、非选择题:必做题8.(10 分)某同学通过下述实验验证力的平行四边形定则.实验步骤:①将弹簧秤固定在贴有白纸的竖直木板上,使其轴线沿竖直方向.②如图 1 甲所示,将环形橡皮筋一端挂在弹簧秤的秤钩上,另一端用圆珠笔尖竖直向下拉,直到弹簧秤示数为某一设定值时,将橡皮筋两端的位置标记为 O1、O2,记录弹簧秤的示数 F,测量并记录O1、O2间的距离(即橡皮筋的长度 l).每次将弹簧秤示数改变 0.50N,测出所对应的 l,部分数据如表所示:F/N0 0.501.001.502.002.50l/cml010.9712.0213.0013.9815.05③找出②中 F=2.50N 时橡皮筋两端的位置,重新标记为 O、O',橡皮筋的拉力记为 FOO′.④在秤钩上涂抹少许润滑油,将橡皮筋搭在秤钩上,如图 1 乙所示.用两圆珠笔尖成适当角度同时拉橡皮筋的两端,使秤钩的下端达到 O 点,将两笔尖的位置标记为 A、B,橡皮筋 OA 段的拉力记为FOA,OB 段的拉力记为 FOB.完成下列作图和填空:(1)利用表中数据在图 2 的坐标纸上画出 F﹣l 图线.(2)测得 OA=6.00cm,OB=7.60cm,则 FOA的大小为 1.80 N.(3)根据给出的标度,在图 3 中作出 FOA和 FOB的合力 F'的图示.(4)通过比较 F'与 F 00' 的大小和方向,即可得出实验结论.【分析】(1)根据表中数据利用描点法得出对应的数据,图象与横坐标的交点即为 l0;(2)橡皮筋两端拉力相等,根据题意求得总长度即可求得皮筋上的拉力;(3)通过给出的标度确定力的长度,根据平行四边形得出图象如图所示;
(4)根据实验原理可明确应比较实验得出的拉力与通过平行四边形定则得出的合力.【解答】解:(1)根据表格中数据利用描点法作出图象如图所示;由图可知,图象与横坐标的交点即为 l0,由图可知 l0=10.0cm;(2)AB 的总长度为 6.00+7.60cm=13.60cm;由图可知,此时两端拉力 F=1.80N;(3)根据给出的标度,作出合力如图所示;(4)只要作出的合力与实验得出的合力 F00'大小和方向在误差允许的范围内相等,即可说明平行四边形定则成立;故答案为:(1)如图所示;10.0;(2)1.80N;(3)如图所示;(4)F00'【点评】本题考查验证平行四边形定则的实验,要注意通过认真分析题意掌握实验原理,注意本题中橡皮筋挂在钩上时,两端的拉力大小相等;根据总长度即可求得拉力大小. 9.(8 分)如图甲所示的电路中,恒流源可为电路提供恒定电流 I0,R 为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器 RL消耗的电功率.改变 RL的阻值,记录多组电流、电压的数值,得到如图乙所示的 U﹣I 关系图线.回答下列问题:(1)滑动触头向下移动时,电压表示数 减小 (填“增大”或“减小”).(2)I0= 1.0 A.(3)RL消耗的最大功率为 5 W(保留一位有效数字).【分析】(1)分析电路结构,根据并联电路规律可知 R 分流的变化,再由欧姆定律可得出电压表示数的变化;(2)由图象及并联电路的规律可分析恒定电流的大小;(3)由功率公式分析得出对应的表达式,再由数学规律可求得最大功率.【解答】解:(1)定值电阻与滑动变阻器并联,当 R 向下移动时,滑动变阻器接入电阻减小,由并联电路规律可知,电流表示数增大,流过 R 的电压减小,故电压表示数减小;(2)当电压表示数为零时,说明 RL短路,此时流过电流表的电流即为 I0;故 I0为 1.0A;(3)由图可知,当 I0全部通过 R 时,I0R=20;由并联电路规律可知,流过 RL的电流为:I= ;则 RL消耗的功率为:P=I2RL= = ;则由数学规律可知,最大功率为:P=5W;
故答案为;(1)减小;(2)1.0;(3)5【点评】本题考查闭合电路欧姆定律在实验中的应用,要注意明确:一、图象的应用,能从图象得出对应的物理规律;二是注意功率公式的变形以及数学规律的正确应用. 10.(18 分)如图甲所示,物块与质量为 m 的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接,物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为 l.开始时物块和小球均静止,将此时传感装置的示数记为初始值,现给小球施加一始终垂直于 l 段细绳的力,将小球缓慢拉起至细绳与竖直方向成 60°角,如图乙所示,此时传感装置的示数为初始值的 1.25 倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的 0.6 倍,不计滑轮的大小和摩擦,重力加速度的大小为 g,求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.【分析】(1)分别对开始及夹角为 60 度时进行受力分析,由共点力平衡列式,联立可求得物块的质量;(2)对最低点由向心力公式进行分析求解物块的速度,再对全过程由动能定理列式,联立可求得克服阻力做功.【解答】解:(1)设开始时细绳的拉力大小为 T1,传感装置的初始值为 F1,物块质量为 M,由平衡条件可得:对小球:T1=mg对物块,F1+T1=Mg当细绳与竖直方向的夹角为 60°时,设细绳的拉力大小为 T2,传感装置的示数为 F2,根据题意可知,F2=1.25F1,由平衡条件可得:对小球:T2=mgcos60°对物块:F2+T2=Mg联立以上各式,代入数据可得:M=3m;(2)设物块经过最低位置时速度大小为 v,从释放到运动至最低位置的过程中,小球克服阻力做功为 Wf,由动能定理得:mgl(1﹣cos60°)﹣Wf= mv2在最低位置时,设细绳的拉力大小为 T3,传感装置的示数为 F3,据题意可知,F3=0.6F1,对小球,由牛顿第二定律得:T3﹣mg=m对物块由平衡条件可得:F3+T3=Mg联立以上各式,代入数据解得:Wf=0.1mgl.答:(1)物块的质量为 3m;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功为 0.1mgl.【点评】本题考查动能定理及共点力的平衡条件的应用,要注意正确选择研究对象,做好受力分析及过程分析;进而选择正确的物理规律求解;要注意在学习中要对多个方程联立求解的方法多加训练.
11.(20 分)如图所示,直径分别为 D 和 2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为 d 的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为 m,电量为+q 的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度 v 射出电场,由 H 点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为 、 ,粒子运动一段时间后再次经过 H 点,求这段时间粒子运动的路程.【分析】(1)带电粒子在电场中做加速运动;根据动能定理可求得电场强度的大小;(2)明确两种可能的相切情况,即可求得半径;根据洛仑兹充当向心力求解磁感应强度;(3)分析粒子在磁场中的运动,根据运动周期明确经过的圆心角,再由圆的性质明确对应的路程.【解答】解:(1)设极板间电场强度大小为 E,对粒子在电场中的加速运动,由动能定理可得:qE = mv2解得:E=(2)设 I 区内磁感应强大小为 B,粒子做圆周运动的半径为 R,由牛顿第二定律得:qvB=m如图甲所示,粒子的运动轨迹与小圆相切有两种情况,若粒子轨迹与小圆外切,由几何关系可得:R= ;解得:B= ;若粒子轨迹与小圆内切,由几何关系得:R= ;解得:B=(3)设粒子在 I 区和 II 区做圆周运动的半径分别为 R1、R2,由题意可知,I 区和 II 内的磁感应强度大小分别为 B1= ;B2= ;由牛顿第二定律可得:qvB1=m ,qvB2=m
代入解得:R1= ,R2= ;设粒子在 I 区和 II 区做圆周运动的周期分别为 T1、T2,由运动学公式得:T1= ,T2=由题意分析,粒子两次与大圆相切的时间间隔的运动轨迹如图乙所示,由对称性可知,I 区两段圆弧所对圆心角相同,设为 θ1,II 区内所对圆心角设为 θ2,圆弧和大圆的两个切点与圆心 O 连线间的夹角为 α,由几何关系可得:θ1=120°在区域 II 中恰好经过了半个圆周,故 θ2=180°α=60°粒子重复上述交替运动到 H 点,设粒子 I 区和 II 区做圆周运动的时间分别为 t1、t2,可得:t1= × T1,t2= × T2设粒子运动的路程为 s,由运动学公式可得 s=v(t1+t2)联立解得:s=5.5πD答:(1)极板间电场强度的大小 ;(2)若粒子运动轨迹与小圆相切,Ⅰ区磁感应强度的大小 或 ;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为 、 ,粒子运动一段时间后再次经过 H 点,这段时间粒子运动的路程 5.5πD.【点评】本题考查带电粒子在磁场和电场中的运动,要注意明确洛仑兹力充当向心力的应用,同时要注意分析可能的运动过程,特别是具有对称性的性质要注意把握. 【物理 3-3】12.(4 分)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是( )A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的【分析】布朗运动是悬浮微粒永不停息地做无规则运动,用肉眼看不到悬浮微粒,只能借助光学显微镜观察到悬浮微粒的无规则运动,肉眼看不到液体分子;布朗运动的实质是液体分子不停地做无规则撞击悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动.【解答】解:A、碳素墨水滴入清水中,观察到的布朗运动是 液体分子不停地做无规则撞击碳悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动,不是由于碳粒受重力作用,故 A 错误;
B、混合均匀的过程中,水分子做无规则的运动,碳粒的布朗运动也是做无规则运动。故 B 正确;C、当悬浮微粒越小时,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡表现的越强,即布朗运动越显著,所以使用碳粒更小的墨汁,混合均匀的过程进行得更迅速。故 C 正确;D、墨汁的扩散运动是由于微粒受到的来自各个方向的液体分子的撞击作用不平衡引起的。故 D 错误。故选:BC。【点评】该题中,碳微粒的无规则运动是布朗运动,明确布朗运动的实质是解题的关键,注意悬浮微粒只有借助显微镜才能看到. 13.(8 分)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为 S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为 300K,压强为大气压强 p0.当封闭气体温度上升至 303K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为 p0,温度仍为 303K,再经过一段时间内,内部气体温度恢复到 300K.整个过程中封闭气体均可视为理想气体.求:(Ⅰ)当温度上升到 303K 且尚未放气时,封闭气体的压强;(Ⅱ)当温度恢复到 300K 时,竖直向上提起杯盖所需的最小力.【分析】(I)分析初末状态的气体状态参量,由查理定律可求得后来的压强;(II)对开始杯盖刚好被顶起列平衡方程;再对后来杯内的气体分析,由查理定律及平衡关系列式,联立求解最小力.【解答】解:(I)以开始封闭的气体为研究对象,由题意可知,初状态温度 T0=300K,压强为 P0,末状态温度 T1=303,压强设为 P1,由查理定律得:=代入数据解得:P1= P0;(II)设杯盖的质量为 m,刚好被顶起时,由平衡条件得:P1S=P0S+mg放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温度为 T2=303K,压强P2=P0;末状态温度 T3=300K,压强设为 P3,由查理定律得=设提起杯盖所需的最小力为 F,由平衡条件得:F+P3S=P0S+mg联立以上各式,代入数据得:F= P0S;答:(I)当温度上升到 303K 且尚未放气时,封闭气体的压强为 P0;(Ⅱ)当温度恢复到 300K 时,竖直向上提起杯盖所需的最小力为 P0S;【点评】本题考查气体实验定律及共点力的平衡条件应用,要注意明确前后气体质量不同,只能分别对两部分气体列状态方程求解. 【物理 3-4】
14.如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。以竖直向上为正方向,物块简谐运动的表达式为 y=0.1sin(2.5πt)m.t=0 时刻,一小球从距物块 h 高处自由落下:t=0.6s 时,小球恰好与物块处于同一高度。取重力加速度的大小 g=10m/s2.以下判断正确的是( )A.h=1.7mB.简谐运动的周期是 0.8sC.0.6s 内物块运动的路程是 0.2mD.t=0.4s 时,物块与小球运动方向相反【分析】由振动公式可明确振动的周期、振幅及位移等;再结合自由落体运动的规律即可求得 h 高度;根据周期明确小球经历 0.4s 时的运动方向。【解答】解:A、由振动方程式可得,t=0.6s 物体的位移为 y=0.1sin(2.5π×0.6)=﹣0.1m;则对小球有:h+ = gt2解得 h=1.7m;故 A 正确;B、由公式可知,简谐运动的周期 T= = =0.8s;故 B 正确;C、振幅为 0.1m;故 0.6s 内物块运动的路程为 3A=0.3m;故 C 错误;D、t=0.4s= ,此时物体在平衡位置向下振动,则此时物块与小球运动方向相同,故 D 错误;故选:AB。【点评】本题考查简谐运动的位移公式,要掌握由公式求解简谐运动的相关信息,特别是位移、周期及振幅等物理量。 15.半径为 R、介质折射率为 n 的透明圆柱体,过其轴线 OO′的截面如图所示.位于截面所在平面内的一细束光线,以角 i0由 O 点射入,折射光线由上边界的 A 点射出.当光线在 O 点的入射角减小至某一值时,折射光线在上边界的 B 点恰好发生反射.求 A、B 两点间的距离.【分析】由折射定律求出光线在左侧面上的折射角,可几何关系求出 A、D 间的距离.由 sinC= 求出全反射临界角 C,再由几何知识求解 B、D 间的距离,即可得到 AB 间的距离.【解答】解:当光线在 O 点的入射角为 i0时,设折射角为 r0,由折射定律得: =n ①设 AD 间的距离为 d1,由几何关系得:
sinr0= ②若光线在 B 点恰好发生全反射,则在 B 点的入射角恰好等于临界角 C,设 BD 间的距离为 d2.则有:sinC= ③由几何关系得:sinC= ④则 A、B 两点间的距离为:d=d2﹣d1;⑤联立解得:d=( ﹣ )R ⑥答:A、B 两点间的距离为( ﹣ )R.【点评】解决本题的关键要作出光路图,运用几何知识和折射定律结合解答. 【物理 3-5】16.14C 发生放射性衰变成为14N,半衰期约 5700 年.已知植物存活期间,其体内14C 与12C 的比例不变;生命活动结束后,14C 的比例持续减小.现通过测量得知,某古木样品中14C 的比例正好是现代植物所制样品的二分之一.下列说法正确的是( )A.该古木的年代距今约 5700 年B.12C、13C、14C 具有相同的中子数C.14C 衰变为14N 的过程中放出 β 射线D.增加样品测量环境的压强将加速14C 的衰变【分析】根据半衰期的物理意义以及剩余质量和总质量之间的关系可正确求解.放射元素的半衰期与物理环境以及化学环境无关.【解答】解:A、设原来614C 的质量为 M0,衰变后剩余质量为 M 则有: ,其中 n 为发生半衰期的次数,由题意可知剩余质量为原来的 ,故 n=1,所以死亡时间为:5700 年,故 A 正确;B、12C、13C、14C 具有相同的质子数和不同的中子数。故 B 错误;C、14C 衰变为14N 的过程中质量数没有变化而核电荷数增加 1,所以是其中的一个中子变成了一个质子和一个电子,所以放出 β 射线。故 C 正确;D、放射元素的半衰期与物理环境以及化学环境无关,故 D 错误。故选:AC。【点评】本题考查了半衰期的计算,要明确公式中各个物理量的含义,理解放射元素的半衰期与物理环境以及化学环境无关.注意平时多加练习,加深对公式的理解. 17.如图,三个质量相同的滑块 A、B、C,间隔相等地静置于同一水平直轨道上.现给滑块 A 向右
的初速度 v0,一段时间后 A 与 B 发生碰撞,碰后 A、B 分别以 v0、 v0的速度向右运动,B 再与 C 发生碰撞,碰后 B、C 粘在一起向右运动.滑块 A、B 与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求 B、C 碰后瞬间共同速度的大小.【分析】根据根据动量守恒求出碰前 A 的速度,然后由动能定理求出 A 与 B 碰撞前摩擦力对 A 做的功;B 再与 C 发生碰撞前的位移与 A 和 B 碰撞前的位移大小相等,由于滑块 A、B 与轨道间的动摩擦因数为同一恒定值,所以地面对 B 做的功与地面对 A 做的功大小相等,由动能定理即可求出 B 与 C 碰撞前的速度,最后根据动量守恒求解 B、C 碰后瞬间共同速度的大小.【解答】解:设滑块是质量都是 m,A 与 B 碰撞前的速度为 vA,选择 A 运动的方向为正方向,碰撞的过程中满足动量守恒定律,得:mvA=mvA′+mvB′设碰撞前 A 克服轨道的阻力做的功为 WA,由动能定理得:WA=设 B 与 C 碰撞前的速度为 vB″,碰撞前 B 克服轨道的阻力做的功为 WB,WB=由于质量相同的滑块 A、B、C,间隔相等地静置于同一水平直轨道上,滑块 A、B 与轨道间的动摩擦因数为同一恒定值,所以:WB=WA设 B 与 C 碰撞后的共同速度为 v,由动量守恒定律得:mvB″=2mv联立以上各表达式,代入数据解得:v=答:B、C 碰后瞬间共同速度的大小是 .【点评】该题涉及多个运动的过程,碰撞的时间极短,就是告诉我们碰撞的过程中系统受到的摩擦力可以忽略不计,直接用动量守恒定律和动能定理列式求解即可,动量守恒定律不涉及中间过程,解题较为方便!
该正点电荷移到 G 点,则 H 点处场强的大小和方向分别为( )A. ,沿 y 轴正向 B. ,沿 y 轴负向C. ,沿 y 轴正向 D. ,沿 y 轴负向6.(6 分)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内。左端连接在一周期为 T0的正弦交流电源上,经二极管整流后,通过 R0的电流 i 始终向左,其大小按图乙所示规律变化。规定内圆环 a 端电势高于 b 端时,a、b 间的电压 uab为正,下列 uab﹣t 图象可能正确的是( )A. B. C. D.7.(6 分)如图甲,两水平金属板间距为 d,板间电场强度的变化规律如图乙所示。t=0 时刻,质量为 m 的带电微粒以初速度为 v0沿中线射入两板间,0~ 时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出。微粒运动过程中未与金属板接触。重力加速度的大小为 g.关于微粒在 0~T 时间内运动的描述,正确的是( )A.末速度大小为 v0B.末速度沿水平方向C.重力势能减少了 mgd D.克服电场力做功为 mgd
二、非选择题:必做题8.(10 分)某同学通过下述实验验证力的平行四边形定则.实验步骤:①将弹簧秤固定在贴有白纸的竖直木板上,使其轴线沿竖直方向.②如图 1 甲所示,将环形橡皮筋一端挂在弹簧秤的秤钩上,另一端用圆珠笔尖竖直向下拉,直到弹簧秤示数为某一设定值时,将橡皮筋两端的位置标记为 O1、O2,记录弹簧秤的示数 F,测量并记录O1、O2间的距离(即橡皮筋的长度 l).每次将弹簧秤示数改变 0.50N,测出所对应的 l,部分数据如表所示:F/N0 0.501.001.502.002.50l/cml010.9712.0213.0013.9815.05③找出②中 F=2.50N 时橡皮筋两端的位置,重新标记为 O、O',橡皮筋的拉力记为 FOO′.④在秤钩上涂抹少许润滑油,将橡皮筋搭在秤钩上,如图 1 乙所示.用两圆珠笔尖成适当角度同时拉橡皮筋的两端,使秤钩的下端达到 O 点,将两笔尖的位置标记为 A、B,橡皮筋 OA 段的拉力记为FOA,OB 段的拉力记为 FOB.完成下列作图和填空:(1)利用表中数据在图 2 的坐标纸上画出 F﹣l 图线.(2)测得 OA=6.00cm,OB=7.60cm,则 FOA的大小为 N.(3)根据给出的标度,在图 3 中作出 FOA和 FOB的合力 F'的图示.(4)通过比较 F'与 的大小和方向,即可得出实验结论.9.(8 分)如图甲所示的电路中,恒流源可为电路提供恒定电流 I0,R 为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器 RL消耗的电功率.改变 RL的阻值,记录多组电流、电压的数值,得到如图乙所示的 U﹣I 关系图线.回答下列问题:(1)滑动触头向下移动时,电压表示数 (填“增大”或“减小”).(2)I0= A.(3)RL消耗的最大功率为 W(保留一位有效数字).10.(18 分)如图甲所示,物块与质量为 m 的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接,物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为 l.开始时物块和小球均静止,将此时传感装置的示数记为初始值,现给小球施加一始终垂直于 l 段细绳的力,将小球缓
慢拉起至细绳与竖直方向成 60°角,如图乙所示,此时传感装置的示数为初始值的 1.25 倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的 0.6 倍,不计滑轮的大小和摩擦,重力加速度的大小为 g,求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.11.(20 分)如图所示,直径分别为 D 和 2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为 d 的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为 m,电量为+q 的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度 v 射出电场,由 H 点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为 、 ,粒子运动一段时间后再次经过 H 点,求这段时间粒子运动的路程. 【物理 3-3】12.(4 分)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是( )A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的13.(8 分)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为 S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为 300K,压强为大气压强 p0.当封闭气体温度上升至 303K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为 p0,温度仍为 303K,再经过一段时间内,内部气体温度恢复到 300K.整个过程中封闭气体均可视为理想气体.求:(Ⅰ)当温度上升到 303K 且尚未放气时,封闭气体的压强;(Ⅱ)当温度恢复到 300K 时,竖直向上提起杯盖所需的最小力. 【物理 3-4】
14.如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。以竖直向上为正方向,物块简谐运动的表达式为 y=0.1sin(2.5πt)m.t=0 时刻,一小球从距物块 h 高处自由落下:t=0.6s 时,小球恰好与物块处于同一高度。取重力加速度的大小 g=10m/s2.以下判断正确的是( )A.h=1.7mB.简谐运动的周期是 0.8sC.0.6s 内物块运动的路程是 0.2mD.t=0.4s 时,物块与小球运动方向相反15.半径为 R、介质折射率为 n 的透明圆柱体,过其轴线 OO′的截面如图所示.位于截面所在平面内的一细束光线,以角 i0由 O 点射入,折射光线由上边界的 A 点射出.当光线在 O 点的入射角减小至某一值时,折射光线在上边界的 B 点恰好发生反射.求 A、B 两点间的距离. 【物理 3-5】16.14C 发生放射性衰变成为14N,半衰期约 5700 年.已知植物存活期间,其体内14C 与12C 的比例不变;生命活动结束后,14C 的比例持续减小.现通过测量得知,某古木样品中14C 的比例正好是现代植物所制样品的二分之一.下列说法正确的是( )A.该古木的年代距今约 5700 年B.12C、13C、14C 具有相同的中子数C.14C 衰变为14N 的过程中放出 β 射线D.增加样品测量环境的压强将加速14C 的衰变17.如图,三个质量相同的滑块 A、B、C,间隔相等地静置于同一水平直轨道上.现给滑块 A 向右的初速度 v0,一段时间后 A 与 B 发生碰撞,碰后 A、B 分别以 v0、 v0的速度向右运动,B 再与 C 发生碰撞,碰后 B、C 粘在一起向右运动.滑块 A、B 与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求 B、C 碰后瞬间共同速度的大小. 2015 年山东省高考物理试卷参考答案与试题解析 一、选择题(共 7 小题,每小题 6 分,共 42 分。每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分。)1.(6 分)距地面高 5m 的水平直轨道上 A、B 两点相距 2m,在 B 点用细线悬挂一小球,离地高度为h,如图.小车始终以 4m/s 的速度沿轨道匀速运动,经过 A 点时将随车携带的小球由轨道高度自由卸下,小车运动至 B 点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小 g=10m/s2.
可求得 h 等于( )A.1.25m B.2.25m C.3.75m D.4.75m【分析】经过 A 点时将随车携带的小球由轨道高度自由卸下后,小球做平抛运动,小车运动至 B 点时细线被轧断,则 B 处的小球做自由落体运动,根据平抛运动及自由落体运动基本公式抓住时间关系列式求解.【解答】解:经过 A 点,将球自由卸下后,A 球做平抛运动,则有:H=解得: ,小车从 A 点运动到 B 点的时间 ,因为两球同时落地,则细线被轧断后 B 处小球做自由落体运动的时间为 t3=t1﹣t2=1﹣0.5=0.5s,则 h=故选:A。【点评】本题主要考查了平抛运动和自由落体运动基本公式的直接应用,关键抓住同时落地求出 B处小球做自由落体运动的时间,难度不大,属于基础题. 2.(6 分)如图,拉格朗日点 L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点 L1建立空间站,使其与月球同周期绕地球运动,以 a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( )A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a1【分析】由题意知,空间站在 L1点能与月球同步绕地球运动,其绕地球运行的周期、角速度等于月球绕地球运行的周期、角速度,由 an= r,分析向心加速度 a1、a2的大小关系.根据 a= 分析 a3与 a1、a2的关系.【解答】解:在拉格朗日点 L1建立空间站,使其与月球同周期绕地球运动,根据向心加速度 an= r,由于拉格朗日点 L1的轨道半径小于月球轨道半径,所以 a2>a1,同步卫星离地高度约为 36000 公里,故同步卫星离地距离小于拉格朗日点 L1的轨道半径,根据 a= 得 a3>a2>a1,
故选:D。【点评】本题比较简单,对此类题目要注意掌握万有引力充当向心力和圆周运动向心加速度公式的联合应用. 3.(6 分)如图,滑块 A 置于水平地面上,滑块 B 在一水平力作用下紧靠滑块 A(A、B 接触面竖直),此时 A 恰好不滑动,B 刚好不下滑。已知 A 与 B 间的动摩擦因数为 μ1,A 与地面间的动摩擦因数为 μ2,最大静摩擦力等于滑动摩擦力。A 与 B 的质量之比为( )A. B.C. D.【分析】对 A、B 整体和 B 物体分别受力分析,然后根据平衡条件列式后联立求解即可。【解答】解:对 A、B 整体分析,受重力、支持力、推力和最大静摩擦力,根据平衡条件,有:F=μ2(m1+m2)g ①再对物体 B 分析,受推力、重力、向左的支持力和向上的最大静摩擦力,根据平衡条件,有:水平方向:F=N 竖直方向:m2g=f其中:f=μ1N联立有:m2g=μ1F ②联立①②解得:=故选:B。【点评】本题关键是采用整体法和隔离法灵活选择研究对象,受力分析后根据平衡条件列式求解,注意最大静摩擦力约等于滑动摩擦力。 4.(6 分)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动,现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。在圆盘减速过程中,以下说法正确的是( )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动【分析】将金属圆盘看成由无数金属幅条组成,根据右手定则判断感应电流的方向,从而判断电势的高低,形成感应电流,再根据左手定则,即可求解。【解答】解:A、将金属圆盘看成由无数金属幅条组成,根据右手定则判断可知:圆盘上的感应电流由边缘流向圆心,所以靠近圆心处电势高,所以 A 正确;B、根据右手定则可知,产生的电动势为 BLv,所以所加磁场越强,产生的电动势越大,电流越大,受到的安培力越大,越易使圆盘停止转动,所以 B 正确;
C、若所加磁场反向,只是产生的电流反向,根据楞次定律可知,安培力还是阻碍圆盘的转动,所以圆盘还是减速转动,所以 C 错误;D、若所加磁场穿过整个圆盘时,圆盘在切割磁感线,产生感应电动势,相当于电路断开,则不会产成感应电流,没有安培力的作用,圆盘将匀速转动,所以 D 正确;故选:ABD。【点评】本题关键要掌握右手定则、安培定则,并能正确用来分析电磁感应现象,对于这两个定则运用时,要解决两个问题:一是什么条件下用;二是怎样用。 5.(6 分)直角坐标系 xOy 中,M、N 两点位于 x 轴上,G、H 两点坐标如图.M、N 两点各固定一负点电荷,一电量为 Q 的正点电荷置于 O 点时,G 点处的电场强度恰好为零.静电力常量用 k 表示.若将该正点电荷移到 G 点,则 H 点处场强的大小和方向分别为( )A. ,沿 y 轴正向 B. ,沿 y 轴负向C. ,沿 y 轴正向 D. ,沿 y 轴负向【分析】根据点电荷的场强公式和场强叠加的原理,可以知道在 G 点的时候负电荷在 G 点产生的合场强与正电荷在 G 点产生的场强大小相等方向相反,在 H 点同样根据场强的叠加来计算合场强的大小即可.【解答】解:G 点处的电场强度恰好为零,说明负电荷在 G 点产生的合场强与正电荷在 G 点产生的场强大小相等方向相反,根据点电荷的场强公式可得,正电荷在 G 点的场强为 ,负电荷在 G 点的合场强也为 ,当正点电荷移到 G 点时,正电荷与 H 点的距离为 2a,正电荷在 H 点产生的场强为 ,方向沿 y 轴正向,由于 GH 对称,所以负电荷在 G 点和 H 点产生的场强大小相等方向相反,大小为 ,方向沿 y 轴负向,所以 H 点处场合强的大小为 ,方向沿 y 轴负向,所以 B 正确;故选:B。【点评】本题是对场强叠加原理的考查,同时注意点电荷的场强公式的应用,本题的关键的是理解G 点处的电场强度恰好为零的含义. 6.(6 分)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内。左端连接在一周期为 T0的正弦交流电源上,经二极管整流后,通过 R0的电流 i 始终向左,其大小按图乙所示规律变化。规定
内圆环 a 端电势高于 b 端时,a、b 间的电压 uab为正,下列 uab﹣t 图象可能正确的是( )A. B. C. D.【分析】由图乙可知,电流为周期性变化的电流,故只需分析 0.5T0内的感应电流即可;通过分析电流的变化明确磁场的变化,根据楞次定律即可得出电动势的图象。【解答】解:在第一个 0.25T0时间内,通过大圆环的电流为顺时针增加的,由楞次定律可判断内球内 a 端电势高于 b 端,因电流的变化率逐渐减小故内环的电动势逐渐减小,同理可知,在 0.25T0~0.5T0时间内,通过大圆环的电流为顺时针逐渐减小;则由楞次定律可知,a 环内电势低于 b 端,因电流的变化率逐渐变大,故内环的电动势变大;故只有 C 正确;故选:C。【点评】本题考查楞次定律的应用,要注意明确楞次定律解题的基本步骤,正确掌握并理解“增反减同”的意义,并能正确应用;同时解题时要正确审题,明确题意,不要被复杂的电路图所迷或! 7.(6 分)如图甲,两水平金属板间距为 d,板间电场强度的变化规律如图乙所示。t=0 时刻,质量为 m 的带电微粒以初速度为 v0沿中线射入两板间,0~ 时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出。微粒运动过程中未与金属板接触。重力加速度的大小为 g.关于微粒在 0~T 时间内运动的描述,正确的是( )A.末速度大小为 v0B.末速度沿水平方向C.重力势能减少了 mgd D.克服电场力做功为 mgd【分析】0~ 时间内微粒匀速运动,重力和电场力相等, ~ 内,微粒做平抛运动, ~T 时间内,微粒竖直方向上做匀减速运动,水平方向上仍然做匀速直线运动,结合牛顿第二定律和运动学公式进行求解。【解答】解:A、0~ 时间内微粒匀速运动,则有:qE0=mg, ~ 内,微粒做平抛运动,下降的