2010年全国统一高考物理试卷(全国卷ⅰ含解析版)
发布时间:2024-05-29 11:05:42浏览次数:282010 年全国统一高考物理试卷(全国卷Ⅰ)一、选择题(在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分.)1.(6 分)原子核 U 经放射性衰变①变为原子 Th,继而经放射性衰变②变为原子核 Pa,再经放射性衰变③变为原子核 U.放射性衰变①、②和③依次为( )A.α 衰变、β 衰变和 β 衰变 B.β 衰变、α 衰变和 β 衰变C.β 衰变、β 衰变和 α 衰变 D.α 衰变、β 衰变和 α 衰变2.(6 分)如图,轻弹簧上端与一质量为 m 的木块 1 相连,下端与另一质量为 M 的木块 2 相连,整个系统置于水平放置的光滑木板上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块 1、2 的加速度大小分别为 a1、a2.重力加速度大小为 g。则有( )A.a1=g,a2=g B.a1=0,a2=gC.a1=0,a2= g D.a1=g,a2= g3.(6 分)关于静电场,下列结论普遍成立的是( )A.电场中任意两点之间的电势差只与这两点的场强有关B.电场强度大的地方电势高,电场强度小的地方电势低C.将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零D.在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向4.(6 分)某地的地磁场磁感应强度的竖直分量方向向下,大小为 4.5×10﹣5T.一灵敏电压表连接在当地入海河段的两岸,河宽 100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为 2m/s。下列说法正确的是( )A.电压表记录的电压为 5mV B.电压表记录的电压为 9mVC.河南岸的电势较高 D.河北岸的电势较高5.(6 分)一水平抛出的小球落到一倾角为 θ 的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A. B. C.tanθ D.2tanθ6.(6 分)如图为两分子系统的势能 Ep与两分子间距离 r 的关系曲线。下列说法正确的是( )A.当 r 大于 r1时,分子间的作用力表现为引力B.当 r 等于 r2时,分子间的作用力为零C.当 r 等于 r1时,分子间的作用力为零D.在 r 由 r1变到 r2的过程中,分子间的作用力做正功
【考点】1I:匀变速直线运动的图像.菁优网版权所有【专题】11:计算题;32:定量思想;43:推理法;512:运动学中的图像专题.【分析】(1)物体在 0﹣10s 内做匀加速直线运动,在 10﹣40s 内做匀速直线运动,在 40﹣60s 内做匀减速直线运动,可知在 10s 末的速度最大,根据速度时间公式求出汽车的最大速度,作出汽车在 0﹣60s 内的速度时间图线;(2)根据 v=at 求得速度(3)速度时间图线围成的面积表示位移,根据图线围成的面积求出汽车在 60s 内通过的路程.【解答】解(1)设 t=10s,40s,60s 时刻的速度分别为 v1,v2,v3.由图知 0~10 s 内汽车以加速度 2 m/s2匀加速行驶,由运动学公式得 v1=2×10m/s=20m/s由图知 10~40s 内汽车匀速行驶,因此 v2=20m/s由图知 40~60s 内汽车以加速度 1m/s2匀减速行驶,由运动学公式得 v3=(20﹣1×20)m/s=0汽车在 0~60s 内的 v﹣t 图线,如图所示. (2)10s 末的速度 v=at=20m/s(3)由 v﹣t 图线可知,在这 60s 内汽车行驶的路程为s= ×20m=900m.答:(1)汽车在 0~60s 内的 v﹣t 图线如图所示;(2)10s 时的瞬时速度为 20m/s;(3)在这 60s 内汽车行驶的路程为 900m.【点评】本题首先要根据加速度图象分析出汽车的运动情况,求出各段运动过程汽车的速度,即可画出速度图象,求解总路程时可以运用运动学公式分段求解,但是没有图象法求解快捷. 12.(18 分)如图所示,质量分别为 m 和 M 的两个星球 A 和 B 在引力作用下都绕 O 点做匀速圆周运动,星球 A 和 B 两者中心之间的距离为 L.已知 A、B 的中心和 O 三点始终共线,A 和 B 分别在 O 的两侧,引力常数为 G。(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球 A 和 B,月球绕其轨道中心运行的周期记为 T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为 T2.已知地球和月球的质量分别为 5.98×1024 kg 和 7.35×1022 kg.求 T2与 T1两者平方之比。(结果保留 3 位小数)【考点】4F:万有引力定律及其应用.菁优网版权所有【专题】528:万有引力定律的应用专题.
【分析】这是一个双星的问题,A 和 B 绕 O 做匀速圆周运动,它们之间的万有引力提供各自的向心力,A 和 B 有相同的角速度和周期,结合牛顿第二定律和万有引力定律解决问题。【解答】解:(1)设两个星球 A 和 B 做匀速圆周运动的轨道半径分别为 r 和 R,相互作用的万有引力大小为 F,运行周期为 T.根据万有引力定律有:F=G ①由匀速圆周运动的规律得 F=m( )2r ② F=M( )2R ③由题意有 L=R+r ④联立①②③④式得:T=2π ⑤(2)在地月系统中,由于地月系统旋转所围绕的中心 O 不在地心,由题意知,月球做圆周运动的周期可由⑤式得出 T1=2π ⑥式中,M′和 m′分别是地球与月球的质量,L′是地心与月心之间的距离。若认为月球在地球的引力作用下绕地心做匀速圆周运动,则 G =m′( )2L′⑦式中,T2为月球绕地心运动的周期。由⑦式得: T2=2π ⑧由⑥⑧式得:( )2=1+ ⑨代入题给数据得:( )2=1.012 ⑩答:(1)两星球做圆周运动的周期为 2π ;(2)T2与 T1两者平方之比为 1.012。【点评】对于双星问题,关键我们要抓住它的特点,即两星球的万有引力提供各自的向心力和两星球具有共同的周期。 13.(21 分)如图,在 0≤x≤ a 区域内存在与 xy 平面垂直的匀强磁场,磁感应强度的大小为 B.在t=0 时刻,一位于坐标原点的粒子源在 xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与 y 轴正方向的夹角分布在 0~180°范围内。已知沿 y 轴正方向发射的粒子在 t=t0时刻刚好从磁场边界上 P( a,a)点离开磁场。求:(1)粒子在磁场中做圆周运动的半径 R 及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与 y 轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间。
【考点】37:牛顿第二定律;CF:洛伦兹力;CI:带电粒子在匀强磁场中的运动.菁优网版权所有【专题】16:压轴题;536:带电粒子在磁场中的运动专题.【分析】(1)由几何关系可确定粒子飞出磁场所用到的时间及半径,再由洛仑兹力充当向心力关系,联立可求得荷质比;(2)由几何关系可确定仍在磁场中的粒子位置,则可由几何关系得出夹角范围;(3)最后飞出的粒子转过的圆心角应为最大,由几何关系可知,其轨迹应与右边界相切,则由几何关系可确定其对应的圆心角,则可求得飞出的时间。【解答】解:(1)初速度与 y 轴方向平行的粒子在磁场中的运动轨迹如图 1 中的弧 OP 所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP 为等腰三角形故∠OCP=此粒子飞出磁场所用的时间为t0= ②式中 T 为粒子做圆周运动的周期。设粒子运动速度的大小为 v,半径为 R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m ④T= ⑤联立②③④⑤解得: =(2)仍在磁场中的粒子其圆心角一定大于 120°,这样粒子角度最小时从磁场右边界穿出;角度最大时磁场左边界穿出。依题意,所有粒子在磁场中转动时间相同,则转过的圆心角相同,故弦长相等;同一时刻仍在磁场内的粒子到 O 点距离相同。在 t0时刻仍在磁场中的粒子应位于以 O 点为圆心、OP为半径的弧 上。(弧 M 只代表初速度与 y 轴正方向为 60 度时粒子的运动轨迹)如图所示。设此时位于 P、M、N 三点的粒子的初速度分别为 vP、vM、vN.由对称性可知 vP与 OP、vM与 OM、N与 ON 的夹角均设 vM、vN与 y 轴正向的夹角分别为 θM、θN,由几何关系有⑧对于所有此时仍在磁场中的粒子,其初速度与 y 轴正方向所成的夹角 θ 应满足 ≤θ≤
(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图 2 所示。由几何关系可知:OM=OP由对称性可知MN=OP由图可知,圆的圆心角为 240°,从粒子发射到全部粒子飞出磁场所用的时间 2t0;【点评】本题考查带电粒子在磁场中的运动,解题的关键在于确定圆心和半径,并能根据几何关系确定可能的运动轨迹。
7.(6 分)某人手持边长为 6cm 的正方形平面镜测量身后一棵树的高度.测量时保持镜面与地面垂直,镜子与眼睛的距离为 0.4m.在某位置时,他在镜中恰好能够看到整棵树的像;然后他向前走了6.0m,发现用这个镜子长度的 就能看到整棵树的像,这棵树的高度约为( )A.5.5m B.5.0m C.4.5m D.4.0m8.(6 分)一简谐振子沿 x 轴振动,平衡位置在坐标原点。t=0 时刻振子的位移 x=﹣0.1m;t= s 时刻x=0.1m;t=4s 时刻 x=0.1m。该振子的振幅和周期可能为( )A.0.1 m, s B.0.1 m,8s C.0.2 m, s D.0.2 m,8s 二、实验题(共 2 小题,共 18 分)9.(6 分)图 1 是利用激光测转的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料.当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图 2 所示).(1)若图 2 中示波器显示屏横向的每大格(5 小格)对应的时间为 5.00×10﹣2s,则圆盘的转速为 转/s.(保留 3 位有效数字)(2)若测得圆盘直径为 10.20cm,则可求得圆盘侧面反光涂层的长度为 cm.(保留 3 位有效数字)10.(12 分)一电流表的量程标定不准确,某同学利用图 1 所示电路测量该电流表的实际量程 Im.所用器材有:量程不准的电流表 A1,内阻 r1=10.0Ω,量程标称为 5.0mA;标准电流表 A2,内阻r2=45.0Ω,量程 1.0mA;标准电阻 R1,阻值 10.0Ω;滑动变阻器 R,总电阻为 300.0Ω;电源 E,电动势 3.0V,内阻不计;保护电阻 R2;开关 S;导线.回答下列问题:(1)在图 2 所示的实物图上画出连线.(2)开关 S 闭合前,滑动变阻器的滑动端 c 应滑动至 端.(3)开关 S 闭合后,调节滑动变阻器的滑动端,使电流表 A1满偏;若此时电流表 A2的读数为 I2,则 A1的量程 Im= .(4)若测量时,A1未调到满偏,两电流表的示数如图 3 所示,从图中读出 A1的示数 I1= ,A2的示数 I2= ;由读出的数据计算得 Im= .(保留 3 位有效数字)
(5)写出一条提高测量准确度的建议: . 三、解答题(共 3 小题,满分 54 分)11.(15 分)汽车由静止开始在平直的公路上行驶,0~60s 内汽车的加速度随时间变化的图线如图所示.(1)画出汽车在 0~60s 内的 v﹣t 图线;(2)求 10s 时的瞬时速度;(3)求在这 60s 内汽车行驶的路程.12.(18 分)如图所示,质量分别为 m 和 M 的两个星球 A 和 B 在引力作用下都绕 O 点做匀速圆周运动,星球 A 和 B 两者中心之间的距离为 L.已知 A、B 的中心和 O 三点始终共线,A 和 B 分别在 O 的两侧,引力常数为 G。(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球 A 和 B,月球绕其轨道中心运行的周期记为 T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为 T2.已知地球和月球的质量分别为 5.98×1024 kg 和 7.35×1022 kg.求 T2与 T1两者平方之比。(结果保留 3 位小数)13.(21 分)如图,在 0≤x≤ a 区域内存在与 xy 平面垂直的匀强磁场,磁感应强度的大小为 B.在t=0 时刻,一位于坐标原点的粒子源在 xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与 y 轴正方向的夹角分布在 0~180°范围内。已知沿 y 轴正方向发射的粒子在 t=t0时刻刚好从磁场边界上 P( a,a)点离开磁场。求:(1)粒子在磁场中做圆周运动的半径 R 及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与 y 轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间。
2010 年全国统一高考物理试卷(全国卷Ⅰ)参考答案与试题解析 一、选择题(在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分.)1.(6 分)原子核 U 经放射性衰变①变为原子 Th,继而经放射性衰变②变为原子核 Pa,再经放射性衰变③变为原子核 U.放射性衰变①、②和③依次为( )A.α 衰变、β 衰变和 β 衰变 B.β 衰变、α 衰变和 β 衰变C.β 衰变、β 衰变和 α 衰变 D.α 衰变、β 衰变和 α 衰变【考点】JA:原子核衰变及半衰期、衰变速度.菁优网版权所有【分析】该题考查了 α、β 衰变特点,只要写出衰变方程即可求解。【解答】解:根据 α、β 衰变特点可知:92238U 经过一次 α 衰变变为90234Th,90234Th 经过 1 次 β 衰变变为91234Pa,91234Pa 再经过一次 β 衰变变为92234U,故 BCD 错误,A 正确。故选:A。【点评】本意很简单,直接考查了 α、β 衰变特点,注意衰变过程中满足质量数、电荷数守恒。 2.(6 分)如图,轻弹簧上端与一质量为 m 的木块 1 相连,下端与另一质量为 M 的木块 2 相连,整个系统置于水平放置的光滑木板上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块 1、2 的加速度大小分别为 a1、a2.重力加速度大小为 g。则有( )A.a1=g,a2=g B.a1=0,a2=gC.a1=0,a2= g D.a1=g,a2= g【考点】2G:力的合成与分解的运用;37:牛顿第二定律.菁优网版权所有【专题】16:压轴题.【分析】木板抽出前,木块 1 和木块 2 都受力平衡,根据共点力平衡条件求出各个力;木板抽出后,木板对木块 2 的支持力突然减小为零,其余力均不变,根据牛顿第二定律可求出两个木块的加速度。【解答】解:在抽出木板的瞬时,弹簧对 1 的支持力和对 2 的压力并未改变。对 1 物体受重力和支持力,mg=F,a1=0。对 2 物体受重力和弹簧的向下的压力,根据牛顿第二定律a= =
故选:C。【点评】本题属于牛顿第二定律应用的瞬时加速度问题,关键是区分瞬时力与延时力;弹簧的弹力通常来不及变化,为延时力,轻绳的弹力为瞬时力,绳子断开即消失。 3.(6 分)关于静电场,下列结论普遍成立的是( )A.电场中任意两点之间的电势差只与这两点的场强有关B.电场强度大的地方电势高,电场强度小的地方电势低C.将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零D.在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向【考点】A6:电场强度与电场力;A7:电场线;AC:电势;AG:电势差和电场强度的关系.菁优网版权所有【分析】本题主要考查静电场中电场强度和电势的特点,可根据所涉及的知识逐个分析.【解答】解:A、电势差的大小决定于电场线方向上两点间距和电场强度,所以 A 错误;B、在正电荷的电场中,离正电荷近,电场强度大,电势高,离正电荷远,电场强度小,电势低;而在负电荷的电场中,离负电荷近,电场强度大,电势低,离负电荷远,电场强度小,电势高,所以 B错误;C、场强为零,电势不一定为零,电场中肯定存在场强都为零、电势又不相等的两个点,在这样的两个点之间移动电荷,电场力将做功,所以 C 错误;D、沿电场方向电势降低,而且速度最快,所以 D 正确;故选:D。【点评】本题以静电场中电场强度和电势比较容易混淆的性质为选项内容,体现对物理量基本概念和基本性质的记忆、理解仍是高考命题的重点之一. 4.(6 分)某地的地磁场磁感应强度的竖直分量方向向下,大小为 4.5×10﹣5T.一灵敏电压表连接在当地入海河段的两岸,河宽 100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为 2m/s。下列说法正确的是( )A.电压表记录的电压为 5mV B.电压表记录的电压为 9mVC.河南岸的电势较高 D.河北岸的电势较高【考点】D9:导体切割磁感线时的感应电动势;DC:右手定则.菁优网版权所有【专题】53C:电磁感应与电路结合.【分析】本题可等效为长度为 100 米,速度为 2m/s 的导体切割磁感线,根据右手定则可以判断两岸电势的高低,根据 E=BLv 可以求出两端电压。【解答】解:海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D 正确,C 错误;根据法拉第电磁感应定律 E=BLv=4.5×10﹣5×100×2=9×10﹣3V,B 正确,A 错误。故选:BD。【点评】本题考查了导体棒切割磁感线的实际应用,在平时的训练中要注意物理知识在实际生活中的应用并能处理一些简单问题。 5.(6 分)一水平抛出的小球落到一倾角为 θ 的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A. B. C.tanθ D.2tanθ【考点】43:平抛运动.菁优网版权所有【分析】物体做平抛运动,我们可以把平抛运动可以分解为水平方向上的匀速直线运动,和竖直方向上的自由落体运动来求解,两个方向上运动的时间相同.
【解答】解:如图平抛的末速度与竖直方向的夹角等于斜面倾角 θ,则有:tanθ= 。则下落高度与水平射程之比为 = = = ,所以 B 正确。故选:B。【点评】本题就是对平抛运动规律的直接考查,掌握住平抛运动的规律就能轻松解决. 6.(6 分)如图为两分子系统的势能 Ep与两分子间距离 r 的关系曲线。下列说法正确的是( )A.当 r 大于 r1时,分子间的作用力表现为引力B.当 r 等于 r2时,分子间的作用力为零C.当 r 等于 r1时,分子间的作用力为零D.在 r 由 r1变到 r2的过程中,分子间的作用力做正功【考点】86:分子间的相互作用力.菁优网版权所有【专题】12:应用题.【分析】从分子势能图象可知,当分子势能最小时,即 r=r2时分子间的引力等于斥力,分子间作用力为零。当 r<r2时,分子间表现为斥力,当 r>r2时,表现为引力,所以当 r 由 r1变到 r2时分子间的作用力做正功。【解答】解:从分子势能图象可知,A、当 r1<r<r2时,分子间表现为斥力,当 r>r2时,表现为引力,故 A 错。B、当分子势能最小时,即 r=r2时分子间的引力等于斥力,分子间作用力为零,故 B 对。C、当 r 等于 r1时,分子间表现为斥力,故 C 错。D、当 r<r2时,分子间表现为斥力,当 r>r2时,表现为引力,所以当 r 由 r1变到 r2时分子间表现为斥力,分子间的作用力做正功,故 D 对。故选:BD。【点评】本题主要考查分子势能图象的理解,知道分子势能随距离增大关系。 7.(6 分)某人手持边长为 6cm 的正方形平面镜测量身后一棵树的高度.测量时保持镜面与地面垂直,镜子与眼睛的距离为 0.4m.在某位置时,他在镜中恰好能够看到整棵树的像;然后他向前走了6.0m,发现用这个镜子长度的 就能看到整棵树的像,这棵树的高度约为( )A.5.5m B.5.0m C.4.5m D.4.0m【考点】H1:光的反射定律.菁优网版权所有【专题】16:压轴题.【分析】正确作出光路图,利用光路可逆,通过几何关系计算出树的高度.这是解决光路图题目的一般思路.【解答】解:设树高为 H,树到镜的距离为 L,如图所示,是恰好看到树时的反射光路图,由图中的三角形可得即 。
人离树越远,视野越开阔,看到树的全部所需镜面越小,同理有 ,以上两式解得:L=29.6m、H=4.5m。所以选项 ABD 是错误的。选项 C 是正确的。故选:C。【点评】平面镜的反射成像,通常要正确的转化为三角形求解. 8.(6 分)一简谐振子沿 x 轴振动,平衡位置在坐标原点。t=0 时刻振子的位移 x=﹣0.1m;t= s 时刻x=0.1m;t=4s 时刻 x=0.1m。该振子的振幅和周期可能为( )A.0.1 m, s B.0.1 m,8s C.0.2 m, s D.0.2 m,8s【考点】72:简谐运动的振幅、周期和频率.菁优网版权所有【专题】51C:单摆问题.【分析】t= s 时刻 x=0.1m;t=4s 时刻 x=0.1m;经过 s 又回到原位置,知 s 是可能周期的整数倍;t=0 时刻振子的位移 x=﹣0.1m,t= s 时刻 x=0.1m,知道周期大于 s,从而可以得到振子的周期,也可以得到振幅。【解答】解:A、B、如果振幅等于 0.1m,经过周期的整数倍,振子会回到原位置,知道 s 是周期的整数倍,经过 s 振子运动到对称位置,可知,单摆的周期可能为 s,则 s 为半个周期,则振幅为0.1m;故 A 正确,B 错误;C、D、如果振幅大于 0.1m,则周期 T= ×2+(4﹣ )×2=8s。当周期为 s 时,经过 s 运动到与平衡位置对称的位置,振幅可以大于 0.1m;故 CD 正确;故选:ACD。【点评】解决本题的关键知道经过周期的整数倍,振子回到原位置。 二、实验题(共 2 小题,共 18 分)9.(6 分)图 1 是利用激光测转的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料.当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图 2 所示).
(1)若图 2 中示波器显示屏横向的每大格(5 小格)对应的时间为 5.00×10﹣2s,则圆盘的转速为 4.55 转/s.(保留 3 位有效数字)(2)若测得圆盘直径为 10.20cm,则可求得圆盘侧面反光涂层的长度为 1.46 cm.(保留 3 位有效数字)【考点】48:线速度、角速度和周期、转速.菁优网版权所有【专题】16:压轴题.【分析】从图象中能够看出圆盘的转动周期即图象中电流的周期,根据转速与周期的关系式 T= ,即可求出转速,反光时间即为电流的产生时间;【解答】解:(1)从图 2 显示圆盘转动一周在横轴上显示 22 格,由题意知道,每格表示 1.00×10﹣2s,所以圆盘转动的周期为 0.22 秒,则转速为 4.55r/s;(2)反光中引起的电流图象在图 2 中横坐标上每次一小格,说明反光涂层的长度占圆盘周长的 22 分之一,故圆盘上反光涂层的长度为 = =1.46cm;故答案为:4.55,1.46.【点评】本题要注意保留 3 位有效数字,同时要明确圆盘的转动周期与图象中电流的周期相等,还要能灵活运用转速与周期的关系公式! 10.(12 分)一电流表的量程标定不准确,某同学利用图 1 所示电路测量该电流表的实际量程 Im.所用器材有:量程不准的电流表 A1,内阻 r1=10.0Ω,量程标称为 5.0mA;标准电流表 A2,内阻r2=45.0Ω,量程 1.0mA;标准电阻 R1,阻值 10.0Ω;滑动变阻器 R,总电阻为 300.0Ω;电源 E,电动势 3.0V,内阻不计;保护电阻 R2;开关 S;导线.回答下列问题:(1)在图 2 所示的实物图上画出连线.(2)开关 S 闭合前,滑动变阻器的滑动端 c 应滑动至 b 端.(3)开关 S 闭合后,调节滑动变阻器的滑动端,使电流表 A1满偏;若此时电流表 A2的读数为 I2,则 A1的量程 Im= 5.5I 2 .(4)若测量时,A1未调到满偏,两电流表的示数如图 3 所示,从图中读出 A1的示数 I1= 3.00mA ,A2的示数 I2= 0.66mA ;由读出的数据计算得 Im= 6.05mA .(保留 3 位有效数字)(5)写出一条提高测量准确度的建议: 多次测量取平均 .
【考点】N6:伏安法测电阻.菁优网版权所有【专题】13:实验题;16:压轴题.【分析】(1)由电路图可画出实物图,注意电表及滑动变阻器的接法;(2)由滑动变阻器的连接方式,注意开始时应让滑动变阻器接入阻值最大;(3)由串并联电路的电流及电压规律可得出 A1的最大量程;(4)根据电流表的最小分度可读出指针所指的示数;(5)根据实验中存在的误差可以提出合理化的建议.【解答】解:(1)实物连线图如图所示:(2)要求滑动变阻器闭合开关前应接入最大电阻,故滑片应滑到 b 处;(3)由原理图可知,A2与 R1串联后与 A1并联,并联部分总电压 U=I(r2+R1)=55I;故电流表 A1中的电流 I1= =5.5I2,此时电流表满偏,故量程为 5.5I2;(4)由表可读出 I1=3.00mA,I2=0.66mA,由(3)的计算可知,此时 I1应为 5.5×0.660mA=3.63mA;故可知:=解得:Im=6.05mA; (5)实验中可以多次测量取平均值;或测量时,电流表指针偏转大于满刻度的 .故答案为;(1)如图所示;(2)b;(3)5.5I2; (4)3.00; 0.66mA; 6.05; (5)多次测量取平均值.【点评】现在实验题的考查更注重了探究实验,在解题时注意通过审题找出实验中含有的信息,并能灵活应用所学过的物理规律求解. 三、解答题(共 3 小题,满分 54 分)11.(15 分)汽车由静止开始在平直的公路上行驶,0~60s 内汽车的加速度随时间变化的图线如图所示.(1)画出汽车在 0~60s 内的 v﹣t 图线;(2)求 10s 时的瞬时速度;(3)求在这 60s 内汽车行驶的路程.