概率论的起源和发展

发布时间:2024-02-04 20:02:26浏览次数:56
概率论的起源和发展概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到 100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于 1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。[概率的起源-与赌博问题有关]三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24次,不同时出现 2 个 6 点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概 率是一次出现 6 点的概率的 1/6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态。17 世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷 24 次,至少出现一次双六的机会却很少。这是什么原因?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得 6 局便算赢家。如果在一个人赢 3 局,另一人赢 4 局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 [数学家们参与赌博]参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡(Pascal) ,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马(Fermat) 。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯(Huygens) 获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,正确答案是:赢 4 局的拿这个钱的 3/4,赢 3 局的拿这个钱的 1/4。为什么呢?假定他们俩再赌一局,或者 A 赢或者 B 赢,若是 A 赢满 5 局,钱全部归 A;A 如果输了,即 A、B 各赢 4 局,这个钱就对半分。现在,A 赢输的可能性都是 1/2,所以 A 拿钱为 1/2+1/2*1/2=3/4;当然,B 就应该得 1/4。他们将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念数学期望,这是描述随机变量取值的平均水平的一个量。[概率论的初步形成]惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。 1657 年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。 因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。在他们之后,对概率论这一学科做出贡献的是瑞士数学家族贝努利家族的几位成 员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“ 大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了 20 年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。[著名的“圣彼得堡问题”]1713 年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世 8 年之久。雅可布的侄子尼古拉·贝努利也真正地参与了“赌博”。他提出了著名的“圣彼得堡问题”:甲乙两人赌博,甲掷一枚硬币到掷出正面为一局。若甲掷一次出现正面,则乙付给甲 1 个卢布;若甲第一次掷得反面,第二次掷得正面,乙付给甲 2 个卢布;若甲前两次掷得反面,第三次得到正面,乙付给甲 4 个卢布。一般地,若甲前 n -1 次掷得反面,第 n 次掷得正面,则乙需付给甲 2n-1 个卢布。问在赌博开始前甲应付给乙多少卢布才有权参加赌博而不致亏损乙方?尼古拉同时代的许多数学家研究了这个问题,并给出了一些不同的解法。但其结果是很奇特的,所付的款数竟为无限大。即不管甲事先拿出多少钱给乙,只要赌博不断地进行乙肯定是要赔钱的。[走出赌博-概率的发展]随着 18、19 世纪科学的发展,人们注意到某些生物、物理和社会现象与机会游戏相似,从而由机会游戏起源的概率论被应用到这些领域中,同时也大大推动了概率论本身的发展。法国数学家拉普拉斯将古典概率论向近代概率论进行推进,他首先明确给出了概率的古典定义,并在概率论中引入了更有力的数学分析工具,将概率论推向一个新的发展阶段他还证明了“棣莫弗拉普拉斯定理”,把棣莫弗的结论推广到一般场合,还建立了观测误差理论和 最小二乘法。拉普拉斯于 1812 年出版了他的著作《分析的概率理论》,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。 概率论在 20 世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906 年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。 1934 年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。如何把概率论建立在严格的逻辑基础上,这是从概率诞生时起人们就关注的问题,这些年来,好多数学家进行过尝试,终因条件不成熟,一直拖了三百年才得以解决。[概率体系的建立和应用]20 世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫 1933 年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。现在,概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。根据概率论中用投针试验估计 π 值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中起着重要的作用。概率论作为理论严谨,应用广泛的数学分支正日益受到人们的重视,并将随着科学技术的发展而得到发展。
文档格式: docx,价格: 5下载文档
返回顶部